C ++ 11, 28s
สิ่งนี้ยังใช้วิธีการเขียนโปรแกรมแบบไดนามิกโดยยึดตามแถว ใช้เวลา 28 วินาทีในการวิ่งด้วยอาร์กิวเมนต์ 13 สำหรับฉัน เคล็ดลับที่ฉันชอบคือnext
ฟังก์ชั่นที่ใช้การทุบตีเล็กน้อยเพื่อค้นหาการจัดเรียงแถวถัดไปด้วยพจนานุกรมที่น่าพอใจกับมาสก์และกฎ no-3-in-a-row
คำแนะนำ
- ติดตั้งMinGW-w64ล่าสุดพร้อมเธรด SEH และ Posix
- รวบรวมโปรแกรมด้วย
g++ -std=c++11 -march=native -O3 <filename>.cpp -o <executable name>
- ทำงานด้วย
<executable name> <n>
#include <vector>
#include <stddef.h>
#include <iostream>
#include <string>
#ifdef _MSC_VER
#include <intrin.h>
#define popcount32 _mm_popcnt_u32
#else
#define popcount32 __builtin_popcount
#endif
using std::vector;
using row = uint32_t;
using xcount = uint8_t;
uint16_t rev16(uint16_t x) { // slow
static const uint8_t revbyte[] {0,128,64,192,32,160,96,224,16,144,80,208,48,176,112,240,8,136,72,200,40,168,104,232,24,152,88,216,56,184,120,248,4,132,68,196,36,164,100,228,20,148,84,212,52,180,116,244,12,140,76,204,44,172,108,236,28,156,92,220,60,188,124,252,2,130,66,194,34,162,98,226,18,146,82,210,50,178,114,242,10,138,74,202,42,170,106,234,26,154,90,218,58,186,122,250,6,134,70,198,38,166,102,230,22,150,86,214,54,182,118,246,14,142,78,206,46,174,110,238,30,158,94,222,62,190,126,254,1,129,65,193,33,161,97,225,17,145,81,209,49,177,113,241,9,137,73,201,41,169,105,233,25,153,89,217,57,185,121,249,5,133,69,197,37,165,101,229,21,149,85,213,53,181,117,245,13,141,77,205,45,173,109,237,29,157,93,221,61,189,125,253,3,131,67,195,35,163,99,227,19,147,83,211,51,179,115,243,11,139,75,203,43,171,107,235,27,155,91,219,59,187,123,251,7,135,71,199,39,167,103,231,23,151,87,215,55,183,119,247,15,143,79,207,47,175,111,239,31,159,95,223,63,191,127,255};
return uint16_t(revbyte[x >> 8]) | uint16_t(revbyte[x & 0xFF]) << 8;
}
// returns the next number after r that does not overlap the mask or have three 1's in a row
row next(row r, uint32_t m) {
m |= r >> 1 & r >> 2;
uint32_t x = (r | m) + 1;
uint32_t carry = x & -x;
return (r | carry) & -carry;
}
template<typename T, typename U> void maxequals(T& m, U v) {
if (v > m)
m = v;
}
struct tictac {
const int n;
vector<row> rows;
size_t nonpal, nrows_c;
vector<int> irow;
vector<row> revrows;
tictac(int n) : n(n) { }
row reverse(row r) {
return rev16(r) >> (16 - n);
}
vector<int> sols_1row() {
vector<int> v(1 << n);
for (uint32_t m = 0; !(m >> n); m++) {
auto m2 = m;
int n0 = 0;
int score = 0;
for (int i = n; i--; m2 >>= 1) {
if (m2 & 1) {
n0 = 0;
} else {
if (++n0 % 3)
score++;
}
}
v[m] = score;
}
return v;
}
void gen_rows() {
vector<row> pals;
for (row r = 0; !(r >> n); r = next(r, 0)) {
row rrev = reverse(r);
if (r < rrev) {
rows.push_back(r);
} else if (r == rrev) {
pals.push_back(r);
}
}
nonpal = rows.size();
for (row r : pals) {
rows.push_back(r);
}
nrows_c = rows.size();
for (int i = 0; i < nonpal; i++) {
rows.push_back(reverse(rows[i]));
}
irow.resize(1 << n);
for (int i = 0; i < rows.size(); i++) {
irow[rows[i]] = i;
}
revrows.resize(1 << n);
for (row r = 0; !(r >> n); r++) {
revrows[r] = reverse(r);
}
}
// find banned locations for 1's given 2 above rows
uint32_t mask(row a, row b) {
return ((a & b) | (a >> 1 & b) >> 1 | (a << 1 & b) << 1) /*& ((1 << n) - 1)*/;
}
int calc() {
if (n < 3) {
return n * n;
}
gen_rows();
int tdim = n < 5 ? n : (n + 3) / 2;
size_t nrows = rows.size();
xcount* t = new xcount[2 * nrows * nrows_c]{};
#define tb(nr, i, j) t[nrows * (nrows_c * ((nr) & 1) + (i)) + (j)]
// find optimal solutions given 2 rows for n x k grids where 3 <= k <= ceil(n/2) + 1
{
auto s1 = sols_1row();
for (int i = 0; i < nrows_c; i++) {
row a = rows[i];
for (int j = 0; j < nrows; j++) {
row b = rows[j];
uint32_t m = mask(b, a) & ~(1 << n);
tb(3, i, j) = s1[m] + popcount32(a << 16 | b);
}
}
}
for (int r = 4; r <= tdim; r++) {
for (int i = 0; i < nrows_c; i++) {
row a = rows[i];
for (int j = 0; j < nrows; j++) {
row b = rows[j];
bool rev = j >= nrows_c;
auto cj = rev ? j - nrows_c : j;
uint32_t m = mask(a, b);
for (row c = 0; !(c >> n); c = next(c, m)) {
row cc = rev ? revrows[c] : c;
int count = tb(r - 1, i, j) + popcount32(c);
maxequals(tb(r, cj, irow[cc]), count);
}
}
}
}
int ans = 0;
if (tdim == n) { // small sizes
for (int i = 0; i < nrows_c; i++) {
for (int j = 0; j < nrows; j++) {
maxequals(ans, tb(n, i, j));
}
}
} else {
int tdim2 = n + 2 - tdim;
// get final answer by joining two halves' solutions down the middle
for (int i = 0; i < nrows_c; i++) {
int apc = popcount32(rows[i]);
for (int j = 0; j < nrows; j++) {
row b = rows[j];
int top = tb(tdim2, i, j);
int bottom = j < nrows_c ? tb(tdim, j, i) : tb(tdim, j - nrows_c, i < nonpal ? i + nrows_c : i);
maxequals(ans, top + bottom - apc - popcount32(b));
}
}
}
delete[] t;
return ans;
}
};
int main(int argc, char** argv) {
int n;
if (argc < 2 || (n = std::stoi(argv[1])) < 0 || n > 16) {
return 1;
}
std::cout << tictac{ n }.calc() << '\n';
return 0;
}