อาจเป็นไปได้ว่าคำถามนี้ถูกถามมาก่อน มันมาจาก CLRS (2nd Ed) ปัญหา 6.5-8 -
ให้อัลกอริทึมเวลาเพื่อรวมรายการที่เรียงลำดับkไว้ในรายการที่เรียงลำดับหนึ่งรายการโดยที่nคือจำนวนองค์ประกอบทั้งหมดในรายการอินพุตทั้งหมด (คำแนะนำ: ใช้ min-heap สำหรับการรวมk -way)
เนื่องจากมีรายการที่เรียงลำดับและค่าnทั้งหมดให้เราสมมติว่าแต่ละรายการมีnหมายเลข kยิ่งไปกว่านั้นแต่ละรายการจะเรียงตามลำดับจากน้อยไปหามากและผลลัพธ์จะถูกเก็บไว้ในลำดับจากน้อยไปหามาก
โค้ดหลอกของฉันดูเหมือนว่านี้ -
list[k] ; k sorted lists
heap[k] ; an auxiliary array to hold the min-heap
result[n] ; array to store the sorted list
for i := 1 to k ; O(k)
do
heap[i] := GET-MIN(list[i]) ; pick the first element
; and keeps track of the current index - O(1)
done
BUILD-MIN-HEAP(heap) ; build the min-heap - O(k)
for i := 1 to n
do
array[i] := EXTRACT-MIN(heap) ; store the min - O(logk)
nextMin := GET-MIN(list[1]) ; get the next element from the list 1 - O(1)
; find the minimum value from the top of k lists - O(k)
for j := 2 to k
do
if GET-MIN(list[j]) < nextMin
nextMin := GET-MIN(list[j])
done
; insert the next minimum into the heap - O(logk)
MIN-HEAP-INSERT(heap, nextMin)
done
ความซับซ้อนโดยรวมของฉันกลายเป็น ) ฉันไม่พบวิธีที่จะหลีกเลี่ยงการวนซ้ำ O ( k )ภายใน O ( n )วนซ้ำเพื่อค้นหาองค์ประกอบขั้นต่ำถัดไปจากรายการ k มีวิธีอื่นอีกไหม? จะรับอัลกอริทึมอย่างไร