หนึ่งในวิธีการในการเลือกชุดย่อยของคุณสมบัติที่มีอยู่สำหรับตัวจําแนกของคุณคือการจัดอันดับตามเกณฑ์ (เช่นการรับข้อมูล) แล้วคำนวณความถูกต้องโดยใช้ตัวจําแนกและชุดย่อยของคุณลักษณะที่จัดอันดับ
ตัวอย่างเช่นหากคุณลักษณะของคุณคือA, B, C, D, E
และหากมีการจัดอันดับดังต่อไปD,B,C,E,A
นี้คุณจะคำนวณความถูกต้องโดยใช้D
จากD, B
นั้นD, B, C
จากนั้นจึงD, B, C, E
... ... จนกว่าความแม่นยำของคุณจะเริ่มลดลง เมื่อมันเริ่มลดลงคุณจะหยุดเพิ่มคุณสมบัติ
ในตัวอย่างที่ 1 (ด้านบน) คุณจะต้องเลือกคุณสมบัติF, C, D, A
และวางคุณสมบัติอื่น ๆ เพื่อลดความแม่นยำของคุณ
วิธีการดังกล่าวถือว่าการเพิ่มคุณสมบัติเพิ่มเติมให้กับโมเดลของคุณเพิ่มความแม่นยำของลักษณนามของคุณจนกว่าจะถึงจุดหนึ่งหลังจากนั้นการเพิ่มคุณสมบัติเพิ่มเติมจะช่วยลดความแม่นยำ (ดังที่เห็นในตัวอย่างที่ 1)
อย่างไรก็ตามสถานการณ์ของฉันแตกต่างกัน ฉันใช้วิธีการที่อธิบายไว้ข้างต้นและพบว่าการเพิ่มคุณสมบัติอื่น ๆ ลดความแม่นยำจนถึงจุดหนึ่งหลังจากนั้นจะเพิ่มขึ้น
ในสถานการณ์เช่นนี้คุณจะเลือกคุณสมบัติของคุณได้อย่างไร คุณเลือกF
และวางที่เหลือเท่านั้น? คุณมีความคิดว่าทำไมความแม่นยำจะลดลงและเพิ่มขึ้น?