ฉันใช้เทนเซอร์โฟลว์เพื่อเขียนโครงข่ายประสาทอย่างง่ายสำหรับการวิจัยนิดหน่อยและฉันมีปัญหามากมายเกี่ยวกับน้ำหนักของ 'น่าน' ในขณะฝึกอบรม ฉันลองวิธีแก้ไขปัญหาที่แตกต่างกันมากมายเช่นการเปลี่ยนเครื่องมือเพิ่มประสิทธิภาพการเปลี่ยนแปลงการสูญเสียขนาดข้อมูลเป็นต้น แต่ไม่มีประโยชน์ ในที่สุดฉันสังเกตเห็นว่าการเปลี่ยนแปลงของอัตราการเรียนรู้ทำให้น้ำหนักของฉันแตกต่างอย่างไม่น่าเชื่อ
ใช้อัตราการเรียนรู้. 001 (ซึ่งฉันคิดว่าค่อนข้างอนุรักษ์นิยม) ฟังก์ชั่นย่อเล็กสุดจะเพิ่มความสูญเสียอย่างมาก หลังจากยุคหนึ่งความสูญเสียอาจเพิ่มขึ้นจากจำนวนในหลักพันไปเป็นล้านล้านและจากนั้นไปสู่อนันต์ ('น่าน') เมื่อฉันลดอัตราการเรียนรู้เป็น. 0001 ทุกอย่างก็ใช้ได้ดี
1) เหตุใดลำดับความสำคัญเดียวจึงมีผลเช่นนี้?
2) ทำไมฟังก์ชั่นย่อเล็กสุดทำหน้าที่ตรงข้ามกับฟังก์ชั่นของมันและเพิ่มการสูญเสียสูงสุด? สำหรับฉันแล้วดูเหมือนว่าจะไม่เกิดขึ้นไม่ว่าจะเรียนรู้อะไรก็ตาม