ในบริบทของการเรียนรู้ของเครื่องจักรฉันได้เห็นคำว่าGround Truthใช้บ่อยมาก ฉันค้นหามากและพบคำจำกัดความต่อไปนี้ในWikipedia :
ในการเรียนรู้ของเครื่องจักรคำว่า "ความจริงพื้นฐาน" หมายถึงความแม่นยำของการจัดหมวดหมู่ของชุดฝึกอบรมสำหรับเทคนิคการเรียนรู้แบบมีผู้สอน สิ่งนี้ใช้ในแบบจำลองทางสถิติเพื่อพิสูจน์หรือพิสูจน์สมมติฐานการวิจัย คำว่า "ความจริงพื้นฐาน" หมายถึงกระบวนการรวบรวมข้อมูลที่เหมาะสม (พิสูจน์ได้) สำหรับการทดสอบนี้ เปรียบเทียบกับมาตรฐานทองคำ
การกรองสแปมแบบเบย์เป็นตัวอย่างทั่วไปของการเรียนรู้แบบมีผู้สอน ในระบบนี้อัลกอริทึมได้รับการสอนด้วยตนเองถึงความแตกต่างระหว่างสแปมและไม่ใช่สแปม ทั้งนี้ขึ้นอยู่กับความจริงพื้นฐานของข้อความที่ใช้ในการฝึกอบรมอัลกอริทึม - ความไม่ถูกต้องในความจริงภาคพื้นดินจะสัมพันธ์กับความไม่ถูกต้องในการตัดสินผลสแปม / ไม่ใช่สแปม
ประเด็นก็คือฉันไม่สามารถเข้าใจความหมายได้ นั่นคือเลเบลที่ใช้สำหรับแต่ละออบเจ็กต์ข้อมูลหรือฟังก์ชั่นเป้าหมายที่ให้เลเบลกับออบเจ็กต์ข้อมูลแต่ละอันหรืออาจเป็นอย่างอื่นหรือไม่?