สำหรับโครงการหลักสูตรสุดท้ายของเราในวิทยาศาสตร์ข้อมูลเราเสนอดังต่อไปนี้ -
ให้ชุดข้อมูลบทวิจารณ์ของ Amazonเราวางแผนที่จะคิดอัลกอริทึม (นั่นคือคร่าวๆตาม Personalized PageRank) ที่กำหนดตำแหน่งเชิงกลยุทธ์สำหรับการวางโฆษณาใน Amazon ตัวอย่างเช่นมีผลิตภัณฑ์นับล้านรายการใน Amazon และชุดข้อมูลจะให้ข้อมูลเกี่ยวกับผลิตภัณฑ์ที่เกี่ยวข้องผลิตภัณฑ์ที่นำมารวมกันดูด้วยกันเป็นต้น (เราสามารถสร้างกราฟพร้อมข้อมูลที่ดูได้และซื้อด้วย) นอกจากนี้ยังให้บทวิจารณ์ที่เกี่ยวข้องกับผลิตภัณฑ์แต่ละชิ้นผ่าน 14 ปี ใช้ข้อมูลเหล่านี้ทั้งหมดเราจะให้คะแนน / จัดอันดับผลิตภัณฑ์ใน Amazon ตอนนี้คุณเป็นผู้ขายใน Amazon ที่ต้องการปรับปรุงปริมาณการใช้งานไปยังหน้าผลิตภัณฑ์ของพวกเขา อัลกอริทึมของเราช่วยให้คุณระบุตำแหน่งเชิงกลยุทธ์ในกราฟที่คุณสามารถวางโฆษณาของคุณเพื่อให้คุณได้รับอัตราการเข้าชมสูงสุด
ตอนนี้คำถามของศาสตราจารย์คือคุณจะตรวจสอบอัลกอริทึมของคุณโดยไม่มีผู้ใช้จริงได้อย่างไร พวกเราพูด-
เราสามารถสร้างแบบจำลองชุดผู้ใช้ที่แน่นอน ผู้ใช้บางคนติดตาม
also_bought
และalso_viewed
เชื่อมโยงไปยังการกระโดดครั้งที่สามบ่อยกว่าการกระโดดครั้งแรกหรือครั้งที่ห้า มีการกระจายพฤติกรรมของผู้ใช้ตามปกติ ผู้ใช้บางคนแทบไม่มีการนำทางใด ๆ เลยหลังจากกระโดดครั้งแรก พฤติกรรมของผู้ใช้ชุดนี้มีการกระจายชี้แจง
ศาสตราจารย์ของเรากล่าวว่า - ไม่ว่าผู้ใช้จะปฏิบัติตามสิ่งใดก็ตามผู้ใช้นำทางโดยใช้ลิงก์สำหรับผลิตภัณฑ์ที่คล้ายกัน อัลกอริทึมการจัดอันดับของคุณพิจารณาผลิตภัณฑ์ b / w 2 ที่คล้ายคลึงกันเพื่อจัดอันดับผลิตภัณฑ์ ดังนั้นการใช้อัลกอริทึมการตรวจสอบนี้จึงเป็นเรื่องcheating
จริง มาพร้อมกับพฤติกรรมของผู้ใช้อื่น ๆ ซึ่งมีความสมจริงและตั้งฉากกับอัลกอริทึมมากขึ้น
มีความคิดเห็นเกี่ยวกับวิธีจำลองพฤติกรรมของผู้ใช้อย่างไร ฉันยินดีที่จะให้รายละเอียดเพิ่มเติมเกี่ยวกับอัลโก