คำถามติดแท็ก convergence

2
คะแนน minima เทียบกับท้องถิ่นในการเรียนรู้อย่างลึกซึ้ง
ฉันได้ยินแอนดรูว์งะ (ในวิดีโอฉันโชคร้ายที่ไม่สามารถหาได้อีกแล้ว) พูดคุยเกี่ยวกับวิธีการเข้าใจความเข้าใจในปัญหาการเรียนรู้ที่ลึกลงไปในความรู้สึกที่พวกเขาถูกมองว่าเป็นปัญหาน้อยกว่าเพราะในพื้นที่มิติสูง การเรียนรู้เชิงลึก) จุดวิกฤติมีแนวโน้มที่จะเป็นจุดอานม้าหรือที่ราบสูงมากกว่าจุดเยือกแข็งในท้องถิ่น ฉันเคยเห็นเอกสาร (เช่นนี้ ) ที่กล่าวถึงสมมติฐานภายใต้ "ขั้นต่ำในท้องถิ่นทุกรายการเป็นขั้นต่ำทั่วโลก" สมมติฐานเหล่านี้ล้วน แต่เป็นเรื่องทางเทคนิค แต่จากสิ่งที่ฉันเข้าใจว่าพวกเขามีแนวโน้มที่จะกำหนดโครงสร้างในโครงข่ายประสาทที่ทำให้มันค่อนข้างเป็นเส้นตรง มันเป็นข้ออ้างที่ถูกต้องหรือไม่ว่าในการเรียนรู้อย่างลึกซึ้ง (รวมถึงสถาปัตยกรรมที่ไม่ใช่เชิงเส้น) ที่ราบสูงมักจะมีขนาดเล็กกว่าท้องถิ่นหรือไม่? และถ้าเป็นเช่นนั้นมีปรีชาญาณ มีอะไรพิเศษเกี่ยวกับการเรียนรู้อย่างลึกซึ้งและจุดอานม้าหรือไม่?

4
จำนวนของยุคในการนำ Gensim Word2Vec มาใช้
มีiterพารามิเตอร์ในการgensimใช้งาน Word2Vec คลาส gensim.models.word2vec.Word2Vec (ประโยค = ไม่มี, ขนาด = 100, อัลฟ่า = 0.025, หน้าต่าง = 5, min_count = 5, max_vocab_size = ไม่มี, ตัวอย่าง = 0, คนงาน = 1, min_alpha = 0.0001, sg = 1, hs = 1, negative = 0, cbow_mean = 0, hashfxn =, iter = 1 , null_word …
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.