คำถามติดแท็ก forecast

1
การทำนายอนุกรมเวลาโดยใช้ LSTM: ความสำคัญของการสร้างอนุกรมเวลาให้ไม่หยุดนิ่ง
ในลิงค์นี้เกี่ยวกับ Stationarity และดิฟเฟอเรนเชียลมันถูกกล่าวถึงว่าโมเดลเช่น ARIMA ต้องการอนุกรมเวลาสำหรับการพยากรณ์เนื่องจากคุณสมบัติทางสถิติเช่นค่าเฉลี่ยความแปรปรวนความสัมพันธ์แบบออโตคอร์เรชั่น ฯลฯ คงที่ตลอดเวลา เนื่องจาก RNNs มีความสามารถที่ดีกว่าในการเรียนรู้ความสัมพันธ์ที่ไม่ใช่เชิงเส้น ( ตามที่กำหนดไว้ที่นี่: สัญญาของเครือข่ายประสาทที่เกิดขึ้นอีกสำหรับการพยากรณ์อนุกรมเวลา ) และทำงานได้ดีกว่าโมเดลอนุกรมเวลาทั่วไปเมื่อข้อมูลมีขนาดใหญ่ ข้อมูลจะมีผลต่อผลลัพธ์ คำถามที่ฉันต้องรู้คำตอบมีดังนี้: ในกรณีที่มีรูปแบบการพยากรณ์อนุกรมเวลาแบบดั้งเดิมความคงที่ของข้อมูลอนุกรมเวลาทำให้ง่ายต่อการคาดการณ์ว่าทำไมและอย่างไร ในขณะที่สร้างแบบจำลองการทำนายอนุกรมเวลาโดยใช้LSTM จำเป็นหรือไม่ที่จะต้องทำให้ข้อมูลอนุกรมเวลาคงที่ ถ้าเป็นเช่นนั้นทำไม
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.