2
เหตุใดการไล่ระดับสีแบบเพิ่มการถดถอยจึงทำนายค่าลบเมื่อไม่มีค่า y ติดลบในชุดการฝึกอบรมของฉัน
ในขณะที่ฉันเพิ่มจำนวนต้นไม้ในScikit เรียนรู้ของGradientBoostingRegressorฉันได้รับการคาดการณ์เชิงลบมากขึ้นแม้ว่าจะไม่มีค่าลบในชุดการฝึกอบรมหรือการทดสอบของฉัน ฉันมีคุณสมบัติประมาณ 10 ตัวซึ่งส่วนใหญ่เป็นแบบไบนารี่ พารามิเตอร์บางอย่างที่ฉันปรับจูน ได้แก่ : จำนวนต้นไม้ / การวนซ้ำ; การเรียนรู้เชิงลึก และอัตราการเรียนรู้ เปอร์เซ็นต์ของค่าลบดูเหมือนสูงสุดที่ ~ 2% ความลึกของการเรียนรู้ที่ 1 (ตอไม้) ดูเหมือนจะมีค่า% ที่ใหญ่ที่สุด เปอร์เซ็นต์นี้ดูเหมือนจะเพิ่มขึ้นด้วยต้นไม้มากขึ้นและอัตราการเรียนรู้ที่น้อยลง ชุดข้อมูลมาจากหนึ่งในการแข่งขันสนามเด็กเล่น kaggle รหัสของฉันเป็นสิ่งที่ชอบ: from sklearn.ensemble import GradientBoostingRegressor X_train, X_test, y_train, y_test = train_test_split(X, y) reg = GradientBoostingRegressor(n_estimators=8000, max_depth=1, loss = 'ls', learning_rate = .01) reg.fit(X_train, y_train) ypred = …