5
การทำนายอนุกรมเวลาโดยใช้ ARIMA กับ LSTM
ปัญหาที่ฉันจัดการคือการทำนายค่าอนุกรมเวลา ฉันกำลังดูซีรีส์ครั้งเดียวในแต่ละครั้งและตามตัวอย่างเช่น 15% ของข้อมูลอินพุตฉันต้องการทำนายค่าในอนาคต จนถึงตอนนี้ฉันเจอสองรุ่น: LSTM (หน่วยความจำระยะสั้นระยะยาวคลาสของเครือข่ายประสาทที่เกิดขึ้นอีก) ARIMA ฉันลองทั้งสองและอ่านบทความเกี่ยวกับพวกเขา ตอนนี้ฉันพยายามทำความเข้าใจให้ดีขึ้นเกี่ยวกับวิธีเปรียบเทียบทั้งสอง สิ่งที่ฉันได้พบจนถึง: LSTM ทำงานได้ดีขึ้นหากเราจัดการกับข้อมูลจำนวนมากและมีข้อมูลการฝึกอบรมเพียงพอในขณะที่ ARIMA จะดีกว่าสำหรับชุดข้อมูลขนาดเล็ก (ถูกต้องหรือไม่) ARIMA ต้องการชุดพารามิเตอร์(p,q,d)ที่ต้องคำนวณตามข้อมูลในขณะที่ LSTM ไม่ต้องการตั้งค่าพารามิเตอร์ดังกล่าว อย่างไรก็ตามมีพารามิเตอร์หลายอย่างที่เราต้องปรับแต่งสำหรับ LSTM แก้ไข:หนึ่งความแตกต่างที่สำคัญระหว่างสองที่ฉันสังเกตเห็นในขณะที่อ่านบทความที่ดีที่นี่คือ ARIMA สามารถทำงานได้ดีในซีรีส์เวลานิ่ง (ที่ไม่มีฤดูกาลแนวโน้มและอื่น ๆ ) และคุณต้องดูแลว่าถ้า ต้องการใช้ ARIMA นอกเหนือจากคุณสมบัติที่กล่าวถึงข้างต้นฉันไม่สามารถหาจุดหรือข้อเท็จจริงอื่นใดที่สามารถช่วยฉันเลือกรูปแบบที่ดีที่สุดได้ ฉันจะขอบคุณจริง ๆ ถ้ามีคนช่วยฉันค้นหาบทความเอกสารหรือสิ่งอื่น ๆ (ไม่มีโชคจนถึงตอนนี้มีเพียงความคิดเห็นทั่วไปบางส่วนที่นี่และที่นั่นและไม่มีอะไรจากการทดลอง) ฉันต้องพูดถึงว่าตอนแรกฉันกำลังจัดการกับข้อมูลสตรีมมิ่ง แต่ตอนนี้ฉันกำลังใช้ชุดข้อมูล NABซึ่งรวมถึง 50 ชุดข้อมูลที่มีขนาดสูงสุด 20k จุดข้อมูล