เมื่อพิจารณาจากระบบที่ฉันได้อ่านว่าในกรณีที่การทำซ้ำ Jacobi ถูกใช้เป็นนักแก้ปัญหาวิธีนี้จะไม่มาบรรจบกันถ้าไม่มีศูนย์ องค์ประกอบใน null พื้นที่ของ ดังนั้นวิธีหนึ่งอย่างเป็นทางการสามารถระบุได้อย่างไรว่าหากมีองค์ประกอบที่ไม่เป็นศูนย์ซึ่งประกอบไปด้วยพื้นที่ว่างของ , วิธี Jacobi นั้นไม่เป็นการรวมกัน? ฉันสงสัยว่าจะทำอย่างไรให้เป็นทางการทางคณิตศาสตร์ได้เนื่องจากส่วนหนึ่งของฉากตั้งฉากกับพื้นที่ว่างนั้นมาบรรจบกันA ∈ R n × n b A b A
ดังนั้นโดยการฉายช่องว่างว่างของจากแต่ละการวนซ้ำมันจะมาบรรจบกัน (หรือ?)
.........
ฉันสนใจเป็นพิเศษในกรณีของ ที่เป็นเมทริกซ์ Laplacian แบบสมมาตรที่มีช่องว่างว่างที่เวกเตอร์และมีองค์ประกอบเป็นศูนย์ใน null-space ของ ,ที่เป็นเมทริกซ์กึ่งกลาง นั่นหมายความว่าย้ำ Jacobi แต่ละคนจะมีช่องว่างของคาดการณ์ไว้เช่น. แต่ละ iterate จะอยู่กึ่งกลาง ? ฉันถามสิ่งนี้ตั้งแต่นั้นมาก็ไม่จำเป็นต้องฉายว่างของจาก Jacobi iterates (หรือกล่าวอีกนัยหนึ่งถึงจุดศูนย์กลางL 1 n = [ 1 … 1 ] T ∈ R n b