ฉันมีระบบสมการไม่เชิงเส้นที่ฉันต้องการแก้ตัวเลข:
f = ( f 1 , … , f n )
ระบบนี้มีคุณสมบัติหลายประการที่ทำให้จัดการได้ยากเป็นพิเศษ ฉันกำลังมองหาแนวคิดเกี่ยวกับวิธีจัดการกับระบบได้อย่างมีประสิทธิภาพยิ่งขึ้น
ทำไมระบบจึงยาก
ฟังก์ชั่นคล้ายกับอันนี้ (แต่แน่นอนในหลายมิติ):
พวกเขามีที่ราบสูงราบคั่นด้วยบริเวณที่มีการเปลี่ยนแปลงที่ราบรื่น ใน 2D คุณสามารถจินตนาการถึงสิ่งนี้ในหนึ่ง :
โดยทั่วไปแล้วแต่ละจะมีที่ราบสองแห่งคั่นด้วยการเปลี่ยนแปลงอย่างราบรื่นรอบ ๆไฮเปอร์เพลน
ฟังก์ชั่นเช่นนี้ยากที่จะจัดการกับวิธีการของนิวตันเนื่องจากอนุพันธ์นั้นมีประสิทธิภาพเป็นศูนย์บนที่ราบสูง ในหลายมิติฉันไม่สามารถหาภูมิภาคที่ไม่มีมีที่ราบสูงได้ง่ายถ้าฉันสามารถแก้ปัญหาได้ วิธีการแบ่งออกเป็นสองส่วนทำงานได้ดีสำหรับแต่มันไม่ได้พูดถึงทั่วไปในหลายมิติ
ฟังก์ชั่นคำนวณได้ช้ามาก ฉันกำลังมองหาวิธีการที่จะได้รับการประมาณค่าที่เหมาะสมของรูทในการทำซ้ำน้อยที่สุด
ฟังก์ชันคำนวณโดยใช้วิธีมอนติคาร์โล ซึ่งหมายความว่าทุกครั้งที่มีการคำนวณฉันจะได้รับค่าสุ่มแตกต่างกันเล็กน้อย ตราสารอนุพันธ์นั้นประเมินได้ยาก เมื่อเราเข้าใกล้รูตมากพอเสียงก็จะเริ่มดังขึ้นและจำเป็นต้องใช้ค่าเฉลี่ยเพื่อเพิ่มความแม่นยำ จะเป็นการดีที่มันควรจะเป็นไปได้ที่จะพูดคุยวิธีการที่จะเทียบเท่าสุ่มประมาณรุ่น (เช่นนิวตัน→ร็อบบินส์มอนโร)
ระบบมีมิติสูง สามารถมีขนาดใหญ่เท่ากับ 10-20 เมื่อวิธีที่มีประสิทธิภาพน่าจะเป็นดังต่อไปนี้: ลองติดตามรูปทรงที่กำหนดโดยและและดูว่าพวกมันตัดกันที่ไหน ยังไม่ชัดเจนว่านี่จะพูดคุยกับมิติที่สูงอย่างไร
มีอะไรอีกบ้างที่ฉันรู้เกี่ยวกับระบบ?
มีรากเดียวอย่างแม่นยำ (จากผลลัพธ์ทางทฤษฎี)
ฉันรู้คุณค่าของบนที่ราบ (สมมุติว่ามันคือ 0 และ 1 สำหรับใด ๆ)
มีความสัมพันธ์พิเศษเพื่อ : การเปลี่ยนแปลง monotonically 1-0 เป็นไปจากไป\สิ่งนี้เป็นจริงสำหรับค่าคงที่ของอื่น ๆ