ฉันอ่านจากตำราเรียนว่าไม่รับประกันว่า X และ Y จะเป็นอิสระ แต่ถ้าพวกเขาเป็นอิสระความแปรปรวนร่วมของพวกเขาจะต้องเป็น 0 ฉันไม่สามารถนึกถึงตัวอย่างที่เหมาะสมได้ มีคนให้หรือไม่
ฉันอ่านจากตำราเรียนว่าไม่รับประกันว่า X และ Y จะเป็นอิสระ แต่ถ้าพวกเขาเป็นอิสระความแปรปรวนร่วมของพวกเขาจะต้องเป็น 0 ฉันไม่สามารถนึกถึงตัวอย่างที่เหมาะสมได้ มีคนให้หรือไม่
คำตอบ:
ตัวอย่างง่าย ๆ : ให้เป็นตัวแปรสุ่มนั่นคือหรือด้วยความน่าจะเป็น 0.5 แล้วปล่อยให้เป็นตัวแปรสุ่มเช่นที่ถ้าและคือสุ่มหรือกับความน่าจะเป็น 0.5 ถ้า 1
เห็นได้ชัดว่าและขึ้นอยู่กับระดับสูง (ตั้งแต่รู้ว่าทำให้ฉันรู้ว่าสมบูรณ์ ) แต่ความแปรปรวนร่วมเป็นศูนย์: พวกเขาทั้งคู่มีค่าเฉลี่ยเป็นศูนย์และ
หรือโดยทั่วไปให้ใช้การแจกแจงและๆ ที่ทำให้สำหรับทั้งหมด(เช่นการกระจายข้อต่อที่เป็น สมมาตรรอบแกน ) และคุณจะมีค่าความแปรปรวนร่วมเป็นศูนย์เสมอ แต่คุณจะไม่มีอิสระเมื่อใดก็ตามที่ ; กล่าวคือเงื่อนไขไม่ได้ทั้งหมดเท่ากับส่วนเพิ่ม หรือเหมือนกันสำหรับสมมาตรรอบแกน
นี่คือตัวอย่างที่ฉันให้กับนักเรียนเสมอ รับตัวแปรสุ่มด้วย และเช่นตัวแปรสุ่มปกติที่มีค่าเฉลี่ยเป็นศูนย์ ใช้ 2 เป็นที่ชัดเจนว่าและมีความเกี่ยวข้อง แต่
รูปภาพด้านล่าง (ซอร์สWikipedia ) มีตัวอย่างจำนวนหนึ่งในแถวที่สามโดยเฉพาะตัวอย่างแรกและตัวที่สี่มีความสัมพันธ์แบบพึ่งพาที่แข็งแกร่ง แต่ความสัมพันธ์ 0 (และ 0 ความแปรปรวนร่วม)
ตัวอย่างอื่น ๆ ลองพิจารณาดาต้าพอยน์ที่เป็นวงกลมหรือวงรีความแปรปรวนร่วมเป็น 0 แต่เมื่อรู้ค่า x คุณจะ จำกัด ค่า y เป็น 2 หรือข้อมูลในรูปสี่เหลี่ยมจัตุรัสหรือสี่เหลี่ยมผืนผ้า ข้อมูลที่มีรูปแบบ X หรือ V หรือ ^ หรือ <หรือ> ทั้งหมดจะให้ความแปรปรวนร่วม 0 แต่ไม่อิสระ ถ้า y = sin (x) (หรือ cos) และ x ครอบคลุมจำนวนเต็มหลายช่วงเวลา cov จะเท่ากับ 0 แต่รู้ว่าคุณรู้จัก x คุณรู้ y หรืออย่างน้อย | y | ในรูปวงรี, x, <และ>