วิเคราะห์แปลง ACF และ PACF


21

ฉันต้องการดูว่าฉันอยู่ในเส้นทางที่ถูกต้องในการวิเคราะห์แปลง ACF และ PACF ของฉันหรือไม่:

ป้อนคำอธิบายรูปภาพที่นี่

พื้นหลัง: (Reff: Philip Hans Franses, 1998)

  1. ในฐานะที่เป็นทั้ง ACF และ PACF แสดงค่าที่สำคัญฉันคิดว่ารูปแบบ ARMA จะตอบสนองความต้องการของฉัน

  2. ACF สามารถใช้ในการประเมิน MA-part, เช่น q-value, PACF สามารถใช้ในการประมาณ AR-part, เช่น p-value

  3. ในการประเมินรูปแบบการสั่งซื้อฉันดูที่ a.) ว่าค่า ACF นั้นออกมาตายเพียงพอหรือไม่ b.) ไม่ว่า ACF จะส่งสัญญาณการทำงานเกินกำหนดและ c.) หรือไม่ว่า ACF และ PACF แสดงยอดที่สำคัญและตีความได้อย่างง่ายดาย

  4. ACF และ PACF อาจแนะนำไม่เพียงรุ่นเดียว แต่หลายรุ่นที่ฉันต้องเลือกหลังจากพิจารณาเครื่องมือวินิจฉัยอื่น ๆ

โดยที่ในใจฉันจะไปข้างหน้าและบอกว่าแบบจำลองที่ชัดเจนที่สุดน่าจะเป็น ARMA (4,2) เนื่องจากค่า ACF ตายออกเมื่อ lag 4 และ PACF แสดง spikes ที่ 1 และ 2

อีกวิธีในการวิเคราะห์คือ ARMA (2,1) เนื่องจากฉันเห็น spikes สำคัญสองอันใน PACF ของฉันและ spike ที่สำคัญหนึ่งใน ACF ของฉัน (หลังจากที่ค่าตายออกจากจุดเริ่มต้นที่ต่ำกว่ามาก (0.4))

ดูผลลัพธ์ในการคาดการณ์ตัวอย่างของฉัน (โดยใช้ข้อผิดพลาดร้อยละค่าเฉลี่ยสัมบูรณ์อย่างง่าย) ARMA (2,1) ให้ผลลัพธ์ที่ดีกว่า ARMA (4,2) มากขึ้น ดังนั้นฉันใช้ ARMA (2,1)!

คุณสามารถยืนยันวิธีการและการค้นพบของฉันในการวิเคราะห์แปลง ACF และ PACF ได้หรือไม่?

ช่วยชื่นชม!

แก้ไข:

สถิติเชิงพรรณนา:

count  252.000000
mean    29.576151
std      7.817171
min     -0.920000
25%     26.877500
50%     30.910000
75%     34.915000
max     47.430000

Skewness of endog_var: [-1.35798399]

Kurtsosis of endog_var: [ 5.4917757]

Augmented Dickey-Fuller Test for endog_var: (-3.76140904255411, 0.0033277703768345287, {'5%': -2.8696473721448728, '1%': -3.4487489051519011, '10%': -2.5710891239349585}

Time-Series:

ป้อนคำอธิบายรูปภาพที่นี่

ส่วนที่เหลือ (ARMA (2,1):

ป้อนคำอธิบายรูปภาพที่นี่

ACF / PACF ของสารตกค้าง:

ป้อนคำอธิบายรูปภาพที่นี่

แก้ไขครั้งที่สอง:

ข้อมูล:

14.37561
23.95561
25.41561
13.88561
23.31561
33.12561
35.30561
35.78561
37.21561
35.23561
37.34561
38.28561
39.03561
36.34561
39.08561
39.34561
38.80561
40.10561
34.13561
35.42561
27.29561
34.13561
39.89561
47.77561
40.57561
36.15561
33.66561
30.97561
24.90561
23.41561
0.31561
8.45561
37.36561
33.40561
13.97561
11.62561
35.07561
36.15561
37.09561
36.95561
37.85561
32.31561
35.41561
36.35561
37.34561
35.90561
37.40561
36.44561
37.37561
36.16561
35.24561
38.47561
39.18561
39.61561
29.55561
35.50561
38.05561
40.32561
44.39561
37.65561
46.27561
29.41561
40.41561
33.44561
37.04561
35.34561
25.24561
30.23561
15.40561
26.79561
35.38561
40.22561
43.14561
36.96561
41.93561
11.30561
6.87561
32.92561
34.54561
38.27561
36.40561
25.44561
37.26561
26.39561
31.13561
35.90561
38.41561
33.66561
33.16561
31.96561
30.34561
37.77561
32.25561
33.21561
38.37561
36.63561
40.78561
35.60561
36.37561
34.42561
42.67561
33.40561
31.49561
24.81561
23.82561
37.34561
30.73561
21.04561
18.20561
27.36561
18.49561
25.41561
27.92561
29.42561
25.91561
27.56561
28.69561
29.89561
31.47561
29.34561
25.35561
21.98561
28.61561
33.87561
20.07561
27.36561
26.48561
20.37561
22.33561
28.52561
21.24561
10.77561
18.69561
30.19561
33.89561
29.81561
27.55561
22.37561
20.32561
22.43561
31.89561
32.10561
27.67561
36.93561
36.51561
26.96561
21.27561
34.68561
34.13561
35.80561
25.38561
33.42561
9.28561
8.70561
30.36561
30.29561
29.56561
28.41561
33.40561
18.47561
16.48561
18.51561
26.35561
25.40561
19.92561
21.26561
10.90561
32.71561
26.71561
29.99561
28.87561
28.55561
14.07561
10.97561
24.92561
26.40561
21.40561
29.08561
30.18561
30.27561
16.15561
21.96561
32.29561
29.57561
30.24561
30.82561
28.83561
27.30561
26.53561
28.39561
29.76561
29.50561
31.81561
34.79561
24.14561
31.34561
33.14561
35.04561
33.20561
33.53561
35.28561
29.84561
35.02561
33.63561
35.65561
35.73561
35.35561
37.18561
27.38561
34.40561
33.69561
29.05561
34.55561
31.76561
30.91561
34.70561
35.87561
28.31561
30.39561
28.03561
30.72561
30.57561
23.93561
25.11561
32.15561
26.74561
28.76561
32.49561
34.79561
27.90561
33.05561
29.50561
31.67561
34.36561
36.88561
32.31561
26.24561
26.66561
33.59561
37.64561
38.26561
36.20561
33.27561
29.94561
29.19561
27.41561
37.24561
36.26561
30.84561
35.46561
32.24561
31.44561
33.40561
30.71561
33.03561
36.43561
33.44561
22.32561
18.65561
31.97561
27.00561
29.66561
30.76561
33.44561
29.19561
12.32561
33.41561
37.13561
33.43561
37.35561
40.17561
29.38561
19.70561
35.44561
30.48561
30.72561
16.09561
30.82561
30.55561
34.38561
35.45561
34.87561
33.78561
33.87561
29.83561
26.35561
26.44561
28.72561
30.85561
28.18561
12.18561
31.82561
18.01561
27.57561
29.38561
20.32561
22.36561
34.01561
34.40561
20.23561
-0.57439
9.87561
29.55561
31.01561
30.00561
28.12561
13.47561
7.42561
22.01561
20.38561
27.57561
31.54561
29.90561
16.40561
21.27561
26.22561
31.47561
31.11561
32.97561
32.34561
29.36561
32.40561
31.16561
32.05561
31.78561
32.34561
33.87561
31.80561
29.90561
30.09561
32.36561
28.15561
26.30561
15.32561
31.03561
33.47561
33.44561
33.71561
28.30561
12.70561
10.17561
43.96561
9.58561
35.38561
33.82561
41.37561
33.40561
33.64561
20.30561
27.85561
29.01561
32.36561
28.33561
29.90561
27.19561
0.39561
8.40561
0.24561
11.87561
29.15561
20.40561
0.42561
29.29561
23.39561
19.36561

ข้อมูลดูเอียงไปทางซ้ายเล็กน้อยอาจไม่ใช่เครื่องเขียน ดูเหมือนว่าฉันจะมีปัญหาที่อาจเกิดขึ้นกับส่วนที่เหลือบางทีแม้ heteroskedasticity ตามเงื่อนไข
Glen_b

ในความคิดของฉันความเบ้แนะนำค่าผิดปกติ (พัลส์) ซึ่งสามารถยืนยันได้จากการวิเคราะห์ข้อมูลดั้งเดิมเท่านั้น
IrishStat

คำตอบ:


8

การมอง ACF และ PACF ของคุณนั้นมีประโยชน์ในบริบทของการวิเคราะห์ของคุณเช่นกัน สถิติ Ljung-Box ของคุณ p-value; ช่วงความเชื่อมั่น, ACF และ PACF ควรดูด้วยกัน ตัวอย่างเช่นการทดสอบ Q ที่นี่:

acf, ci, Q, pvalue = tsa.acf(res1.resid, nlags=4,confint=95,  qstat=True, unbiased=True)

ที่นี่ - การทดสอบ Q ของเราสำหรับความสัมพันธ์อัตโนมัติเป็นการตรวจสอบโดยรวมของการตีความกราฟิกของเรา

บันทึกฉบับร่างเกี่ยวกับการวิเคราะห์อนุกรมเวลาใน Statsmodels: http://conference.scipy.org/proceedings/scipy2011/pdfs/statsmodels.pdf


14

การพึ่งพา ACF และ PACF เพียงอย่างเดียวโดยใช้เครื่องมือที่แนะนำในช่วงกลางยุค 60 นั้นบางครั้งก็ถูกต้อง แต่ก็ไม่ค่อยถูกต้องยกเว้นข้อมูลจำลอง เครื่องมือระบุรูปแบบเช่น AIC / BIC แทบจะไม่เคยระบุรุ่นที่มีประโยชน์ได้อย่างถูกต้อง แต่จะแสดงสิ่งที่เกิดขึ้นเมื่อคุณไม่ได้อ่านสิ่งพิมพ์ขนาดเล็กเกี่ยวกับสมมติฐาน ฉันขอแนะนำให้คุณเริ่มต้นให้ง่ายที่สุดเท่าที่จะเป็นไปได้ แต่อย่าให้ง่ายเกินไปและประมาณตัวแบบเบื้องต้น AR (1) ตามที่แนะนำโดย Glen_b ส่วนที่เหลือ / การวิเคราะห์จากแบบจำลองเบื้องต้นนี้สามารถใช้ในการคำนวณได้อีก ACF และ PACF แนะนำการเพิ่มแบบจำลองที่มีศักยภาพหรือการทำให้แบบจำลองง่ายขึ้น โปรดทราบว่าการตีความเป็นการอ้างอิงของคุณขอให้สังเกตว่าซีรี่ส์ / ส่วนที่เหลือในปัจจุบันนั้นไม่มีโครงสร้างที่กำหนดไว้ล่วงหน้าใด ๆ เช่นกะพริบระดับการเลื่อนระดับ แนวโน้มเวลาท้องถิ่นและฤดูกาลตามฤดูกาลและยิ่งกว่านั้นซีรีย์มีความแปรปรวนข้อผิดพลาดคงที่และพารามิเตอร์ของตัวแบบเบื้องต้นนั้นไม่เปลี่ยนแปลงตลอดเวลา หากคุณต้องการคุณสามารถโพสต์ข้อมูลของคุณและฉันจะพยายามช่วยคุณสร้างแบบจำลองที่มีประโยชน์

แก้ไขหลังจากมีการรายงานข้อมูลแล้ว:

ส่งและวิเคราะห์ค่า 365 ค่าโดยให้โมเดล AR (1) ต่อไปนี้พร้อมพัลส์ที่ระบุและกะ 2 ระดับ ป้อนคำอธิบายรูปภาพที่นี่. โปรดทราบว่านี่เป็นการเดายอดนิยม ป้อนคำอธิบายรูปภาพที่นี่เหลือจากรุ่นนี้มีการพล็อตที่นี่ มีข้อเสนอแนะของความแปรปรวนแบบ hetero-scedasticity แต่นี่เป็นอาการและเราจำเป็นต้องหาวิธีรักษาที่ถูกต้องซึ่งเราจะพบในที่สุด การดำเนินการของส่วนที่เหลือที่แสดงที่นี่แสดงให้เห็นป้อนคำอธิบายรูปภาพที่นี่ถึงข้อเสนอแนะของความไม่เพียงพอของแบบจำลอง มองใกล้ที่ตารางของ acf ของส่วนที่เหลืออยู่ที่นี่ป้อนคำอธิบายรูปภาพที่นี่การแนะนำโครงสร้างที่ล่าช้า 7 และ 14 การนำทั้งสองเงื่อนงำมารวมกัน (ขนาดตัวอย่าง 365 และโครงสร้างรายสัปดาห์ที่สำคัญเช่นโครงสร้างล่าช้า 7) ฉันตัดสินใจที่จะตรวจสอบว่านี่เป็นข้อมูลรายวันหรือไม่ ผู้ใช้ใหม่มักจะละเว้นข้อมูลที่สำคัญมากเมื่อพวกเขากำหนดข้อมูลของพวกเขาในสถานที่ที่เข้าใจผิดว่าคอมพิวเตอร์ควรฉลาดพอที่จะเข้าใจทุกสิ่ง โปรดทราบว่าความล่าช้า 7 และความล่าช้า 14 ปมได้รับการล้นมือในแปลงของ ACF และ PACF ของ OP การปรากฏตัวของโครงสร้างที่กำหนดขึ้นในส่วนที่เหลือจะเพิ่มความแปรปรวนของข้อผิดพลาดซึ่งจะเป็นการยับยั้ง acf เมื่อระบุค่าผิดปกติ / พัลส์ / ระดับแล้ว acf จะเปิดเผยการมีอยู่ของโครงสร้างตัวบ่งชี้อัตโนมัติ / ตัวบ่งชี้รายวันซึ่งจำเป็นต้องนำมาพิจารณา

จากนั้นฉันวิเคราะห์ข้อมูลที่อนุญาตให้ซอฟต์แวร์ดำเนินการต่อไปว่าเป็นข้อมูลรายวัน ด้วยค่า 365 เท่านั้นจึงเป็นไปไม่ได้ที่จะสร้างแบบจำลองที่มีตัวทำนายตามฤดูกาล / วันหยุดอย่างเหมาะสม แต่เป็นไปได้ที่มีข้อมูลมากกว่า 1 ปี

แบบจำลองที่พบมีการนำเสนอที่นี่ป้อนคำอธิบายรูปภาพที่นี่ประกอบด้วย 5 หุ่นทุกวันสองระดับการเปลี่ยนแปลงจำนวนพัลส์และแบบจำลองของรูปแบบ arima (1,0,0) (1,0,0) พล็อตของส่วนที่เหลือจะไม่แสดงโครงสร้างที่ไม่มั่นคงอีกต่อไปเนื่องจากมีแบบจำลองที่ดีกว่าเข้ามาแทนที่ ป้อนคำอธิบายรูปภาพที่นี่. Th ป้อนคำอธิบายรูปภาพที่นี่อี acf ของเหลือคือทำความสะอาดมาก กราฟที่เกิดขึ้นจริง / ทำความสะอาดเน้นจุดชีพจรผิดปกติ ป้อนคำอธิบายรูปภาพที่นี่. บทเรียนที่นี่คือว่าเมื่อเราวิเคราะห์ข้อมูลโดยไม่มีข้อมูลที่สำคัญว่ามันเป็นอนุกรมเวลารายวันมีพัลส์จำนวนหนึ่งซึ่งสะท้อนการเป็นตัวแทนที่ไม่เพียงพอ (หรืออาจเป็นความรู้ขั้นสูงของเบาะแสรายวัน) ที่เกิดขึ้นจริง / Fit ป้อนคำอธิบายรูปภาพที่นี่และการพยากรณ์นำเสนอที่นี่

มันน่าสนใจที่จะเห็นว่าคนอื่นจะทำอะไรกับชุดข้อมูลเดียวกัน โปรดทราบว่าการวิเคราะห์ทั้งหมดดำเนินการในโหมดแฮนด์ฟรีโดยใช้ซอฟต์แวร์ที่มีให้ใช้ในเชิงพาณิชย์


1
อ่านตอนเช้าผิดพลาด ... ปกติจะไม่เห็นความล่าช้า (0) ในกราฟของฉัน
IrishStat

1
มันหลอกฉันในตอนแรกเช่นกัน
Glen_b -Reinstate Monica

ขอบคุณสำหรับคำตอบ. ในฐานะที่เป็นคนที่ไม่มีประสบการณ์ในการคาดการณ์อนุกรมเวลามันยากที่จะเข้าใจขั้นตอนการเลือกรุ่นที่เหมาะสมเนื่องจากไม่มีวิธีที่จะไปอย่างเป็นทางการ น่าเสียดายที่ฉันไม่ได้รับอนุญาตให้โพสต์ข้อมูลดิบของฉัน ฉันหวังว่าข้อมูลเพิ่มเติมจะเป็นประโยชน์ (ดูที่ 'แก้ไข:')
Peter Knutsen

คุณสามารถปรับขนาด / ปิดบังข้อมูลของคุณก่อนนำเสนอ เมื่อมองไปที่พล็อตมันอาจจะมีค่าผิดปกติบางอย่างซึ่งหากไม่ได้รับการลดอคติลง acf และ pacf จะแนะนำความพอเพียงอย่างไม่ถูกต้อง มีข้อเสนอแนะที่มองเห็นได้ของแนวโน้มลดลงตามมาโดยไม่มีแนวโน้ม แต่นั่นเป็นเพียงการเดาในขณะนี้
IrishStat

ฉันเพิ่งเพิ่มข้อมูลบางอย่างที่คุณอาจใช้ ..
Peter Knutsen

11

ดูเหมือนว่าฉันจะนับ spikes ที่ล่าช้า 0

PACF ของคุณแสดงเข็มที่มีขนาดใหญ่พอสมควรที่หน่วงเวลา 1 ซึ่งเป็นการแนะนำ AR (1) แน่นอนว่าสิ่งนี้จะชักนำให้เกิดการลดลงของรูปทรงเรขาคณิตใน ACF (ซึ่งคุณเห็นในวงกว้างคุณเห็น) ดูเหมือนว่าคุณกำลังพยายามทำให้พอดีกับการพึ่งพากันสองครั้ง - ทั้งเป็น AR และ MA

ฉันเพิ่งลอง AR (1) เพื่อเริ่มต้นและดูว่ามีอะไรเหลือที่ต้องกังวล


ปีเตอร์; คำตอบของฉันมีการพิมพ์ผิด (ฉันมี AR (1) ถูกต้องในย่อหน้าสุดท้าย แต่พิมพ์ MA (1) ในวรรคสอง) ซึ่งได้รับการแก้ไขแล้ว
Glen_b -Reinstate Monica

ขอบคุณสำหรับคำตอบ. การนับจาก lag 0 เป็นความผิดพลาดที่สำคัญอย่างแน่นอน! ฉันลอง AR (1) และผลลัพธ์ไม่ดีเท่า ARMA (2,1)!
ปีเตอร์ Knutsen

อาจเป็นกรณีที่มันไม่ดี - อย่างไรก็ตาม AR (1) จะเป็นจุดเริ่มต้น PACF ของสิ่งตกค้างมีลักษณะอย่างไร ซีรี่ส์ต้นฉบับมีหน้าตาเป็นอย่างไร มีหลายสิ่งที่อาจเกิดขึ้นซึ่งไม่สามารถรวบรวมได้ง่ายจาก ACF และ PACF ของข้อมูล
Glen_b -Reinstate Monica

ขอบคุณ ฉันโพสต์ข้อมูลเพิ่มเติมบางอย่างซึ่งอาจนำไปสู่ข้อมูลเชิงลึกใหม่
Peter Knutsen
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.