ชื่อกล่าวมันทั้งหมดและฉันสับสน ต่อไปนี้ใช้มาตรการ aov () ซ้ำในอาร์และเรียกใช้สิ่งที่ฉันคิดว่าเป็นการเรียก lm () เทียบเท่า แต่พวกเขากลับค่าความผิดพลาดที่แตกต่างกัน (แม้ว่าจำนวนสแควร์สจะเท่ากัน)
เห็นได้ชัดว่าค่าตกค้างและค่าติดตั้งจาก aov () เป็นค่าที่ใช้ในแบบจำลองเนื่องจากผลรวมของกำลังสองของพวกเขารวมกันในแต่ละรูปแบบ / ผลรวมที่เหลือของกำลังสองที่รายงานโดยสรุป (my.aov) ดังนั้นโมเดลเชิงเส้นจริงที่ใช้กับการออกแบบการวัดซ้ำคืออะไร
set.seed(1)
# make data frame,
# 5 participants, with 2 experimental factors, each with 2 levels
# factor1 is A, B
# factor2 is 1, 2
DF <- data.frame(participant=factor(1:5), A.1=rnorm(5, 50, 20), A.2=rnorm(5, 100, 20), B.1=rnorm(5, 20, 20), B.2=rnorm(5, 50, 20))
# get our experimental conditions
conditions <- names(DF)[ names(DF) != "participant" ]
# reshape it for aov
DFlong <- reshape(DF, direction="long", varying=conditions, v.names="value", idvar="participant", times=conditions, timevar="group")
# make the conditions separate variables called factor1 and factor2
DFlong$factor1 <- factor( rep(c("A", "B"), each=10) )
DFlong$factor2 <- factor( rep(c(1, 2), each=5) )
# call aov
my.aov <- aov(value ~ factor1*factor2 + Error(participant / (factor1*factor2)), DFlong)
# similar for an lm() call
fit <- lm(value ~ factor1*factor2 + participant, DFlong)
# what's aov telling us?
summary(my.aov)
# check SS residuals
sum(residuals(fit)^2) # == 5945.668
# check they add up to the residuals from summary(my.aov)
2406.1 + 1744.1 + 1795.46 # == 5945.66
# all good so far, but how are the residuals in the aov calculated?
my.aov$"participant:factor1"$residuals
#clearly these are the ones used in the ANOVA:
sum(my.aov$"participant:factor1"$residuals ^ 2)
# this corresponds to the factor1 residuals here:
summary(my.aov)
# but they are different to the residuals reported from lm()
residuals(fit)
my.aov$"participant"$residuals
my.aov$"participant:factor1"$residuals
my.aov$"participant:factor1:factor2"$residuals
participant
เช่นเดียวกับในanova(lm(value ~ factor1*factor2*participant, DFlong))