นักสถิติการทำงานสนใจเกี่ยวกับความแตกต่างระหว่างการอนุมานแบบประจำและแบบเบย์หรือไม่?


37

ในฐานะคนนอกดูเหมือนว่ามีสองมุมมองการแข่งขันว่าควรทำการอนุมานทางสถิติอย่างไร

ทั้งสองวิธีที่แตกต่างกันทั้งสองพิจารณาว่าถูกต้องโดยนักสถิติการทำงาน?

การเลือกคำถามหนึ่งถือเป็นคำถามเชิงปรัชญามากกว่านี้หรือไม่? หรือสถานการณ์ปัจจุบันถือเป็นปัญหาและมีความพยายามที่จะรวมวิธีการต่าง ๆ เข้าด้วยกัน?


1
ฉันคิดว่ามีนักสถิติประยุกต์ที่มุ่งเน้นในทางปฏิบัติซึ่งเชื่อว่าสามารถใช้งานได้อย่างถูกต้องหากใช้อย่างถูกต้อง & จะไปด้วยวิธีใดก็ตามที่ใช้งานได้จริงในกรณีนี้ ในหลอดเลือดดำนี้ฉันถามคำถาม ( รายการสถานการณ์ที่วิธีการแบบเบย์นั้นง่ายกว่าสะดวกกว่าหรือสะดวกกว่า ) พยายามที่จะล้วงเอาเมื่อวิธีการแบบเบย์อาจจะง่ายกว่า (เนื่องจากโดยทั่วไปแล้ววิธีการแบบเบียนคือ cf Shelby # 3)
gung - Reinstate Monica

คำตอบ:


21

ฉันไม่คิดว่ามันจะสำคัญมากตราบใดที่การตีความผลลัพธ์ดำเนินการภายในกรอบการทำงานเดียวกันกับการวิเคราะห์ ปัญหาหลักของสถิติบ่อย ๆ คือมีแนวโน้มที่จะรักษา p-value ของการทดสอบความสำคัญบ่อยๆราวกับว่ามันเป็นความน่าจะเป็น Bayesian a-posteriori ที่สมมติฐานว่างเป็นจริง (และ 1-p เป็นความน่าจะเป็นที่ สมมติฐานทางเลือกคือความจริง) หรือการรักษาช่วงความเชื่อมั่นแบบประจำเป็นช่วงเวลาที่น่าเชื่อถือแบบเบย์ (และด้วยเหตุนี้สมมติว่ามีความน่าจะเป็น 95% ที่ค่าจริงอยู่ภายในช่วงความเชื่อมั่น 95% สำหรับตัวอย่างข้อมูลที่เรามี) การตีความประเภทนี้เป็นเรื่องธรรมดาเพราะเป็นคำตอบที่ตรงกับคำถามที่เราอยากถาม

ตราบใดที่รูปแบบของคำตอบนั้นเป็นที่ยอมรับและเราสามารถเห็นด้วยกับข้อสันนิษฐานที่ทำไว้แล้วไม่มีเหตุผลที่จะชอบอีกข้อหนึ่ง - มันเป็นเรื่องของม้าสำหรับหลักสูตร

ฉันยังคงเป็น Bayesian อยู่ดี; o)


13
ในการให้ตัวอย่าง: บ่อยครั้งที่คน ๆ หนึ่งอยากรู้ P (model | data)) การวิเคราะห์เป็นประจำจะช่วยให้คุณ P (data | model) อย่างไรก็ตาม (ซึ่งผู้คนมักจะอ่านเป็น P (model | data) โดยการสมมติความน่าจะเป็นก่อนหน้า P (model) คุณจะได้รับ P (model | data) ในสถิติ Bayesian แต่แล้วคุณ สามารถถกเถียงว่า P (model) ควรเป็นอย่างไร
Andre Holzner

13

นอกเหนือจากสิ่งที่เชนกล่าวฉันคิดว่าการต่อเนื่องประกอบด้วย:

  1. สถานะทางปรัชญาที่มั่นคงในค่าย Bayes
  2. ทั้งสองถือว่าถูกต้องโดยมีวิธีการหนึ่งที่มากกว่าหรือน้อยกว่าเหมาะสำหรับปัญหาที่กำหนด
  3. ฉันจะใช้วิธีการแบบเบย์ (ตลอดเวลาหรือมากกว่านั้น) แต่ฉันไม่มีเวลา
  4. สถานะทางปรัชญาที่มั่นคงในค่ายผู้ใช้บ่อย
  5. ฉันทำอย่างที่ฉันเรียนในชั้นเรียน Bayes คืออะไร

และใช่ฉันรู้ว่านักสถิติและนักวิเคราะห์ที่ทำงานในจุดเหล่านี้ทั้งหมด ส่วนใหญ่ฉันใช้ชีวิตอยู่ที่ # 3 พยายามใช้เวลามากขึ้นในอันดับที่ 2


1
... และหากมีนักสถิติหรือผู้ฝึกปฏิบัติจำนวนเท่า ๆ กันที่จะต้องพบกับสถานการณ์เหล่านั้นก็เห็นได้ชัดว่าระบบนั้นมีความสำคัญต่อการใช้เป็นประจำไม่ใช่หรือ? และถ้าวิธีการแบบเบย์เริ่มแพร่หลายมากขึ้นนั่นจะไม่บอกสิ่งที่เกี่ยวข้องโดยปริยายหรือ? - มีเหตุผลที่น่าเชื่อถือ ... ;-)
gwr

11

ฉันคิดว่าสถิติแบบเบย์เข้ามาเล่นในสองบริบทที่แตกต่างกัน

ในอีกด้านหนึ่งนักวิจัย / นักสถิติบางคนเชื่อมั่นใน "จิตวิญญาณแบบเบย์" อย่างแน่นอนและยอมรับขอบเขตของกรอบสมมติฐานสมมุติฐานแบบคลาสสิกเป็นประจำได้ตัดสินใจที่จะมุ่งเน้นไปที่การคิดแบบเบย์ การศึกษาทางจิตวิทยาการทดลองที่เน้นขนาดของเอฟเฟกต์เล็ก ๆ หรือนัยสำคัญทางสถิติของเส้นขอบนั้นตอนนี้ต้องพึ่งพากรอบเบย์มากขึ้น ในแง่นี้ฉันชอบที่จะกล่าวถึงงานที่กว้างขวางของ Bruno Lecoutre (1-4) ที่สนับสนุนการพัฒนาความเสี่ยงในการใช้งาน fiducial และ Bayesian (M) ANOVA ฉันคิดว่าความจริงที่ว่าเราสามารถตีความช่วงความเชื่อมั่นได้อย่างง่ายดายในแง่ของความน่าจะเป็นที่ใช้กับพารามิเตอร์ที่น่าสนใจ (เช่นขึ้นอยู่กับการแจกแจงก่อนหน้า) เป็นจุดเปลี่ยนที่สำคัญในการคิดเชิงสถิติสมาคมระหว่างประเทศเพื่อการวิเคราะห์แบบเบย์ใช้แบบจำลองแบบเบย์ แฟรงก์ฮาร์เรลนอกจากนี้ยังมีโครงร่างที่น่าสนใจของคชกรรมวิธีการสำหรับการแพทย์เช่นนำไปใช้กับRCTs

ในทางกลับกันวิธีการแบบเบย์ได้พิสูจน์แล้วว่าประสบความสำเร็จในการวินิจฉัยโรค (5) และมักจะใช้เป็นทางเลือกสุดท้ายที่สถิติแบบดั้งเดิมจะล้มเหลวหากสามารถทำได้ ฉันกำลังคิดบทความ psychometrical (6) ที่ผู้เขียนมีความสนใจในการประเมินข้อตกลงระหว่างนักรังสีวิทยาเกี่ยวกับความรุนแรงของกระดูกสะโพกหักจากชุดข้อมูลที่ จำกัด มาก (รังสีเอกซ์ 12 แพทย์ x 15 รังสี) และใช้แบบจำลองการตอบสนองไอเท็ม

ในที่สุดกระดาษ 45 หน้าล่าสุดที่ตีพิมพ์ในสถิติการแพทย์แสดงภาพรวมที่น่าสนใจของ "การทะลุทะลวง" ของการสร้างแบบจำลองแบบเบย์ในชีวสถิติ:

Ashby, D (2006) สถิติแบบเบย์ในการแพทย์: การทบทวน สถิติทางการแพทย์ , 25 (21), 3589-631

อ้างอิง

  1. Rouanet H. , Lecoutre B. (1983) การอนุมานที่เฉพาะเจาะจงใน ANOVA: จากการทดสอบที่สำคัญไปจนถึงขั้นตอนแบบเบย์ วารสารวิชาคณิตศาสตร์และสถิติอังกฤษ , 36 , 252-268
  2. Lecoutre B. , Lecoutre M.-P. , Poitevineau J. (2001) ใช้การละเมิดและการทดสอบที่มีความสำคัญในชุมชนวิทยาศาสตร์: การเลือกแบบเบย์จะไม่สามารถหลีกเลี่ยงได้หรือไม่? การทบทวนทางสถิติระหว่างประเทศ , 69 , 399-418
  3. Lecoutre B. (2006) ทุกคนไม่ใช่ Bayesian ใช่ไหม จดหมายข่าวของ Bayesian Society อินเดีย , III , 3-9
  4. Lecoutre B. (2006) และถ้าคุณเป็น Bayesian โดยไม่รู้ตัว? ในเอโมฮัมหมัด Djafari (Ed.): 26 การประชุมเชิงปฏิบัติการเกี่ยวกับการอนุมานแบบเบย์และวิธีการเอนโทรปีสูงสุดในสาขาวิทยาศาสตร์และวิศวกรรม Melville: AIP Conference Proceedings Vol. 872, 15-22
  5. การเจาะรู, แอลดี (2550) ชีวสถิติเบย์และการแพทย์วินิจฉัย . แชปแมนและฮอล / CRC
  6. บอลด์วิน, พี, เบิร์นสไตน์, J. , และ Wainer, H. (2009) Psychometrics สะโพก สถิติทางการแพทย์ , 28 (17), 2277-92

5

ฉันคิดว่าในสาขาที่สมัครแล้วการแบ่งแยกไม่ได้ให้ความสนใจมากนักเนื่องจากนักวิจัย / ผู้ปฏิบัติงานมักจะเน้นการปฏิบัติงานประยุกต์ คุณเลือกเครื่องมือที่ทำงานตามบริบท

อย่างไรก็ตามการอภิปรายยังมีชีวิตอยู่และดีในหมู่ผู้ที่สนใจเกี่ยวกับปัญหาปรัชญาพื้นฐานทั้งสองวิธี ดูตัวอย่างบล็อกโพสต์ต่อไปนี้ของAndrew Gelman :


1
ฉันจะยืนยันว่าด้าน "ในทางปฏิบัติ" จริง ๆ แล้วจะสนใจเพียงว่าวิธีการนั้นสามารถนำไปใช้ได้จริงไม่ว่ามันจะยอดเยี่ยมในเชิงปรัชญาเพียงใด ฉันเชื่อว่านี่เป็นเหตุผลสำคัญสำหรับการประนีประนอมจำนวนมาก
ความน่าจะเป็นทางการเงิน

5

ในขณะนี้เป็นส่วนตัวฉันจะพูดว่า:

มันถูกเรียกว่า " การถกเถียง " แบบเบย์ / บ่อยครั้งด้วยเหตุผล มีความแตกต่างทางปรัชญาที่ชัดเจนระหว่างสองแนวทาง

แต่ก็เหมือนกับทุกสิ่งส่วนใหญ่มันเป็นคลื่นความถี่ บางคนมีมากในค่ายหรืออื่น ๆ และปฏิเสธทางเลือกอย่างสมบูรณ์ คนส่วนใหญ่อาจตกอยู่ตรงกลาง ตัวฉันเองจะใช้วิธีใดวิธีหนึ่งขึ้นอยู่กับสถานการณ์


1
ฉันจะเพิ่มว่าการอภิปรายไม่ได้เป็นเพียงปรัชญา - มีบางครั้งที่มันสร้างความแตกต่างซึ่งวิธีการที่คุณเลือกที่จะนำมาใช้ - โดยเฉพาะอย่างยิ่งเมื่อมันมาถึงปริมาณ "ข้อผิดพลาด" / "ความไม่แน่นอน" ในประมาณการ / ข้อสรุป
ความน่าจะเป็นทางการเงิน
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.