การกระจายของอัตราส่วนระหว่างตัวแปรสุ่มชุดอิสระสองตัว


17

Supppse XและYมีการแจกแจงแบบมาตรฐานอย่างสม่ำเสมอใน[0,1]และมีความเป็นอิสระ PDF ของZ=Y/Xคืออะไร

คำตอบจากตำราทฤษฎีความน่าจะเป็นบางอย่างคือ

fZ(z)={1/2,if 0z11/(2z2),if z>10,otherwise.

ฉันสงสัยโดยสมมาตรไม่ควรfZ(1/2)=fZ(2) ? นี่ไม่ใช่กรณีตาม PDF ข้างต้น


โดเมนของXและYคืออะไร
Sobi


2
ทำไมคุณคาดหวังว่าสิ่งนี้จะเป็นจริง ฟังก์ชั่นความหนาแน่นจะบอกคุณว่าแน่นเต็มไปน่าจะเป็นในเขตของจุดและมันก็เป็นอย่างชัดเจนยากมากขึ้นสำหรับZที่จะอยู่ใกล้2กว่า1/2 (พิจารณาเช่นว่าZสามารถเสมอ1/2ว่าสิ่งที่ไม่มีXแต่Z<2เมื่อX>1/2 )
dsaxton


3
ฉันไม่คิดว่ามันซ้ำซ้อน, คำถามนั้นกำลังค้นหา PDF, ที่นี่ฉันมี PDF, ฉันแค่ถามความถูกต้องของมัน (อาจจะไร้เดียงสา)
QED

คำตอบ:


19

ตรรกะที่ถูกต้องคือด้วย , Z = YX,YU(0,1)และ Z-1=XZ=YXมีการแจกแจงแบบเดียวกันดังนั้นสำหรับ0<z<1 P { YZ1=XY0<z<1 โดยที่สมการของ CDF ใช้ความจริงที่ว่าY

P{YXz}=P{XYz}=P{YX1z}FZ(z)=1FZ(1z)
เป็นตัวแปรสุ่มต่อเนื่องและเพื่อให้P{Z}=P{Z>}=1-FZ() ดังนั้นรูปแบบไฟล์ PDF ของZตอบสนอง Z(Z)=Z-2Z(Z-1),YXP{Za}=P{Z>a}=1FZ(a)Z
fZ(z)=z2fZ(z1),0<z<1.
Thus fZ(12)=4fZ(2), and not fZ(12)=fZ(2) as you thought it should be.

14

This distribution is symmetric--if you look at it the right way.

The symmetry you have (correctly) observed is that Y/X and X/Y=1/(Y/X) must be identically distributed. When working with ratios and powers, you are really working within the multiplicative group of the positive real numbers. The analog of the location invariant measure dλ=dx on the additive real numbers R is the scale invariant measure dμ=dx/x on the multiplicative group R of positive real numbers. It has these desirable properties:

  1. dμ is invariant under the transformation xax for any positive constant a:

    dμ(ax)=d(ax)ax=dxx=dμ.
  2. dμ is covariant under the transformation xxb for nonzero numbers b:

    dμ(xb)=d(xb)xb=bxb1dxxb=bdxx=bdμ.
  3. dμ is transformed into dλ via the exponential:

    dμ(ex)=dexex=exdxex=dx=dλ.
    Likewise, dλ is transformed back to dμ via the logarithm.

(3) establishes an isomorphism between the measured groups (R,+,dλ) and (R,,dμ). The reflection xx on the additive space corresponds to the inversion x1/x on the multiplicative space, because ex=1/ex.

Let's apply these observations by writing the probability element of Z=Y/X in terms of dμ (understanding implicitly that z>0) rather than dλ:

fZ(z)dz=gZ(z)dμ=12{1dz=zdμ,if 0z11z2dz=1zdμ,if z>1.

That is, the PDF with respect to the invariant measure dμ is gZ(z), proportional to z when 0<z1 and to 1/z when 1z, close to what you had hoped.


This is not a mere one-off trick. Understanding the role of dμ makes many formulas look simpler and more natural. For instance, the probability element of the Gamma function with parameter k, xk1exdx becomes xkexdμ. It's easier to work with dμ than with dλ when transforming x by rescaling, taking powers, or exponentiating.

The idea of an invariant measure on a group is far more general, too, and has applications in that area of statistics where problems exhibit some invariance under groups of transformations (such as changes of units of measure, rotations in higher dimensions, and so on).


3
Looks like a very insightful answer. It's a pity I don't understand it at the moment. I will check back later.
qed

4

If you think geometrically...

In the X-Y plane, curves of constant Z=Y/X are lines through the origin. (Y/X is the slope.) One can read off the value of Z from a line through the origin by finding its intersection with the line X=1. (If you've ever studied projective space: here X is the homogenizing variable, so looking at values on the slice X=1 is a relatively natural thing to do.)

Consider a small interval of Zs, (a,b). This interval can also be discussed on the line X=1 as the line segment from (1,a) to (1,b). The set of lines through the origin passing through this interval forms a solid triangle in the square (X,Y)U=[0,1]×[0,1], which is the region we're actually interested in. If 0a<b1, then the area of the triangle is 12(10)(ba), so keeping the length of the interval constant and sliding it up and down the line X=1 (but not past 0 or 1), the area is the same, so the probability of picking an (X,Y) in the triangle is constant, so the probability of picking a Z in the interval is constant.

However, for b>1, the boundary of the region U turns away from the line X=1 and the triangle is truncated. If 1a<b, the projections down lines through the origin from (1,a) and (1,b) to the upper boundary of U are to the points (1/a,1) and (1/b,1). The resulting area of the triangle is 12(1a1b)(10). From this we see the area is not uniform and as we slide (a,b) further and further to the right, the probability of selecting a point in the triangle decreases to zero.

Then the same algebra demonstrated in other answers finishes the problem. In particular, returning to the OP's last question, fZ(1/2) corresponds to a line that reaches X=1, but fZ(2) does not, so the desired symmetry does not hold.


3

Just for the record, my intuition was totally wrong. We are talking about density, not probability. The right logic is to check that

1kfZ(z)dz=1/k1fZ(z)=12(11k)
,

and this is indeed the case.


1

Yea the link Distribution of a ratio of uniforms: What is wrong? provides CDF of Z=Y/X. The PDF here is just derivative of the CDF. So the formula is correct. I think your problem lies in the assumption that you think Z is "symmetric" around 1. However this is not true. Intuitively Z should be a skewed distribution, for example it is useful to think when Y is a fixed number between (0,1) and X is a number close to 0, thus the ratio would be going to infinity. So the symmetry of distribution is not true. I hope this help a bit.

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.