ฉันกำลังพยายามสร้างตัวตรวจจับวัตถุที่เกิดขึ้นน้อยมาก (ในภาพ) วางแผนที่จะใช้ตัวแยกประเภทไบนารี CNN ที่ใช้ในหน้าต่างแบบเลื่อน / ปรับขนาด ฉันได้สร้างชุดการฝึกอบรมและการทดสอบเชิงลบ 1: 1 ที่สมดุล (เป็นสิ่งที่ถูกต้องหรือไม่ที่จะทำในกรณีเช่นนี้ btw?) และตัวจําแนกทำดีในชุดทดสอบในแง่ของความถูกต้อง ตอนนี้ฉันต้องการควบคุมการจำ / ความแม่นยำของตัวจําแนกของฉันดังนั้นตัวอย่างเช่นมันจะไม่ติดฉลากผิดที่เกิดขึ้นในชั้นเรียนส่วนใหญ่มากเกินไป
วิธีแก้ปัญหาที่ชัดเจน (สำหรับฉัน) คือการใช้การสูญเสียแบบโลจิสติกส์เดียวกันซึ่งตอนนี้ใช้ แต่ข้อผิดพลาดน้ำหนักประเภท I และ Type II แตกต่างกันโดยการคูณการสูญเสียในหนึ่งในสองกรณีในค่าคงที่บางอย่างซึ่งสามารถปรับได้ ถูกต้องหรือไม่
ป.ล. ในความคิดที่สองนี่เทียบเท่ากับการยกน้ำหนักตัวอย่างการฝึกอบรมมากกว่าตัวอย่างอื่น เพียงแค่เพิ่มคลาสที่มากกว่าหนึ่งชั้นจะทำให้ฉันคิดว่าเหมือนกัน