ขณะนี้ฉันกำลังสอนตัวเองเกี่ยวกับการจำแนกประเภทและโดยเฉพาะฉันกำลังดูวิธีการสามวิธี: การสนับสนุนเครื่องเวกเตอร์เครือข่ายประสาทและการถดถอยโลจิสติก สิ่งที่ฉันพยายามเข้าใจคือเหตุที่การถดถอยโลจิสติกจะทำงานได้ดีกว่าอีกสอง
จากความเข้าใจของฉันในการถดถอยโลจิสติกความคิดคือการปรับฟังก์ชั่นโลจิสติกให้พอดีกับข้อมูลทั้งหมด ดังนั้นถ้าข้อมูลของฉันเป็นเลขฐานสองข้อมูลทั้งหมดที่มีป้ายกำกับ 0 ควรถูกแมปกับค่า 0 (หรือใกล้เคียง) และข้อมูลทั้งหมดที่มีค่า 1 ควรถูกแมปกับค่า 1 (หรือใกล้เคียง) ตอนนี้เนื่องจากฟังก์ชันโลจิสติกส์นั้นต่อเนื่องและราบรื่นการดำเนินการถดถอยนี้จึงต้องการข้อมูลทั้งหมดของฉันเพื่อให้พอดีกับเส้นโค้ง ไม่มีความสำคัญมากขึ้นนำไปใช้กับจุดข้อมูลที่อยู่ใกล้กับขอบเขตการตัดสินใจและจุดข้อมูลทั้งหมดมีส่วนทำให้เกิดการสูญเสียตามจำนวนที่แตกต่างกัน
อย่างไรก็ตามด้วยการสนับสนุนเวกเตอร์แมชชีนและเครือข่ายนิวรัลเฉพาะจุดข้อมูลเหล่านั้นที่อยู่ใกล้กับขอบเขตการตัดสินใจมีความสำคัญ ตราบใดที่จุดข้อมูลยังคงอยู่ในขอบเขตเดียวกันของขอบเขตการตัดสินใจมันจะมีส่วนทำให้เกิดการสูญเสียเท่ากัน
ดังนั้นเหตุใดการถดถอยของโลจิสติกจึงมีประสิทธิภาพสูงกว่าเครื่องเวกเตอร์หรือโครงข่ายประสาทเนื่องจากว่า "เสียทรัพยากร" ในการพยายามที่จะปรับเส้นโค้งให้เข้ากับข้อมูลที่ไม่สำคัญ (จำแนกได้ง่าย ๆ ) ขอบเขต?