บทนำ
ในการรวมการคาดการณ์หนึ่งในโซลูชั่นยอดนิยมขึ้นอยู่กับการประยุกต์ใช้เกณฑ์ข้อมูลบางอย่าง การยกตัวอย่างเช่น Akaike เกณฑ์โดยประมาณสำหรับรุ่นหนึ่งสามารถคำนวณความแตกต่างของจากแล้วRP_j = E ^ {(AIC ^ * - AIC_j) / 2}อาจจะตีความว่าเป็น ความน่าจะเป็นแบบสัมพัทธ์ของ model jเป็นค่าจริง น้ำหนักนั้นถูกกำหนดเป็น
ปัญหา
ความยากลำบากที่ฉันพยายามเอาชนะคือแบบจำลองนั้นประมาณจากตัวแปรตอบสนอง (ภายนอก) ที่แปรเปลี่ยนไป ตัวอย่างเช่นบางรุ่นขึ้นอยู่กับอัตราการเติบโตประจำปีและอีกรุ่น - จากอัตราการเติบโตรายไตรมาส ดังนั้นค่าAIC_j ที่แยกออกมาจะไม่สามารถเปรียบเทียบกันได้โดยตรง
พยายามแก้ปัญหา
เนื่องจากสิ่งที่สำคัญคือความแตกต่างของที่สามารถใช้AICของโมเดลพื้นฐาน(ตัวอย่างเช่นฉันพยายามแยกlm(y~-1)
โมเดลโดยไม่มีพารามิเตอร์ใด ๆ ) ที่ไม่แปรเปลี่ยนไปจากการตอบสนองการแปลงตัวแปรการตอบสนองแล้วเปรียบเทียบความแตกต่างระหว่างโมเดล th และ ฐานรูปแบบAICนี่ แต่มันดูเหมือนว่ายังคงเป็นจุดที่อ่อนแอ - ความแตกต่างเป็นผลกระทบจากการเปลี่ยนแปลงของตัวแปรการตอบสนอง
สรุปข้อสังเกต
หมายเหตุตัวเลือกเช่น "ประมาณโมเดลทั้งหมดในตัวแปรตอบกลับเดียวกัน" นั้นเป็นไปได้ แต่ใช้เวลานานมาก ฉันต้องการค้นหา "การรักษา" ที่รวดเร็วก่อนที่จะตัดสินใจอย่างเจ็บปวดหากไม่มีวิธีอื่นในการแก้ไขปัญหา