คุณจะตีความสัมประสิทธิ์ของ inverse Mills ratio (แลมบ์ดา) ในสองHeckman model ได้อย่างไร
คุณจะตีความสัมประสิทธิ์ของ inverse Mills ratio (แลมบ์ดา) ในสองHeckman model ได้อย่างไร
คำตอบ:
สมมติว่าเรามีรูปแบบดังต่อไปนี้:
เราสามารถคิดเกี่ยวกับสิ่งนี้ได้ในสองสามวิธี แต่ฉันคิดว่าขั้นตอนทั่วไปคือการจินตนาการว่าเราพยายามประเมินผลของลักษณะที่สังเกตได้จากค่าแรงที่ได้รับ โดยธรรมชาติมีบางคนที่เลือกที่จะไม่ทำงานและอาจตัดสินใจแบบจำลองการทำงานได้ด้วยวิธีต่อไปนี้: หากมากกว่าศูนย์เราสังเกตและถ้าไม่ใช่เราก็ไม่ได้ สังเกตค่าจ้างสำหรับบุคคล ฉันสมมติว่าคุณรู้ว่า OLS จะนำไปสู่การประมาณการแบบเอนเอียงเป็น
Heckman พยายามคิดหา endogeneity ในสถานการณ์อคติการเลือกนี้ ดังนั้นเพื่อพยายามกำจัด endogeneity, Heckman แนะนำว่าก่อนอื่นเราประมาณผ่าน MLE probit โดยทั่วไปจะใช้ข้อ จำกัด การยกเว้น หลังจากนั้นเราประเมินอัตราส่วนผกผันของ Inverse ซึ่งบอกความน่าจะเป็นที่ตัวแทนตัดสินใจทำงานกับความน่าจะเป็นสะสมของการตัดสินใจของตัวแทนเช่น:
หมายเหตุ: เนื่องจากเรากำลังใช้ probit เรากำลังประเมินจริง{V}
เราจะเรียกค่าประมาณข้างต้น{i} เราใช้สิ่งนี้เป็นเครื่องมือในการควบคุม endogeneity กล่าวคือส่วนหนึ่งของคำผิดพลาดที่การตัดสินใจทำงานมีผลต่อค่าจ้างที่ได้รับ ดังนั้นขั้นตอนที่สองคือ:
ดังนั้นในที่สุดคำถามของคุณคือวิธีการตีความถูกต้อง?
การตีความสัมประสิทธิ์คือ:
สิ่งนี้บอกอะไรเรา? นี่คือส่วนของความแปรปรวนร่วมระหว่างการตัดสินใจทำงานและค่าแรงที่ได้รับเมื่อเทียบกับการเปลี่ยนแปลงในการตัดสินใจทำงาน การทดสอบการเลือกอคติจึงเป็นการทดสอบว่าหรือหรือไม่
หวังว่าจะสมเหตุสมผลสำหรับคุณ (และฉันไม่ได้ทำผิดพลาดอย่างมหันต์)