ทำไมไม่ทำงาน CLT สำหรับ


16

ดังนั้นเราจึงรู้ว่าผลรวมของnn poissons กับพารามิเตอร์λλเป็นตัวเอง Poisson กับ nnλ λ ดังนั้นสมมุติฐานหนึ่งอาจจะใช้x ~ P o ฉันs s o n ( λ = 1 )xpoisson(λ=1)และบอกว่ามันเป็นจริงΣ n 1 x ฉัน ~ P o ฉันs s o n ( λ = 1 )n1xipoisson(λ=1)ที่แต่ละx ฉันxiคือ: x ฉัน ~ P oฉันs s o n ( λ = 1 / n )xipoisson(λ=1/n) , และใช้เวลา n ขนาดใหญ่ที่จะได้รับ CLT ในการทำงาน

สิ่งนี้ (ชัด) ไม่ทำงาน ฉันคิดว่าสิ่งนี้เกี่ยวข้องกับการทำงานของ CLT "เร็วขึ้น" สำหรับตัวแปรสุ่มซึ่ง "ใกล้" กว่าปกติและแลมบ์ดาที่เล็กลงคือยิ่งเราได้รับตัวแปรสุ่มซึ่งส่วนใหญ่เป็น 0 และเปลี่ยนแปลงอย่างอื่น

อย่างไรก็ตามสิ่งที่ฉันอธิบายคือสัญชาตญาณของฉัน มีวิธีที่เป็นทางการมากกว่านี้ไหมที่จะอธิบายว่าทำไมในกรณีนี้

ขอบคุณ!


6
For starters, CLT needs you to divide ni=1xini=1xi by nn (in which case you'll get converge to a gaussian).
Alex R.

1
@AlexR. No you divide by nn, then the standard deviation will be a factor of 1/n1/n
Aksakal

4
ฉันไม่เห็นสิ่งที่คำถามนี้เกี่ยวข้องกับ CLT "ไม่ทำงาน" CLT เกี่ยวข้องกับผลรวมของตัวแปรสุ่มที่เป็นมาตรฐานโดยมีการแจกแจงที่กำหนดในขณะที่คุณกำลังรับตัวแปรสุ่มเดี่ยวและใคร่ครวญวิธีการมากมายในการแบ่งมัน
whuber

2
@AlexR การตั้งค่าดูเหมือนจะผิดทั้งหมด มีสองกระบวนการที่แตกต่างกันเกิดขึ้นที่นี่ - การรวมและการหาร - และไม่มีเหตุผลที่จะคิดว่าพวกเขาควรมีลักษณะเชิงซีมโทติคที่คล้ายกัน
whuber

3
@Aksakal: actually, AlexR is correct. If you divide by nn, you get a degenerate distribution as nn. If you divide by nn, you approach a normal distribution with sd = 1 as nn.
Cliff AB

คำตอบ:


13

I agree with @whuber that the root of the confusion seems to be replacing the summation asymptotic in CLT with some sort of division in your argument. In CLT we get the fixed distribution f(x,λ)f(x,λ) then draw nn numbers xixi from it and calculate the sum ˉxn=1nni=1xix¯n=1nni=1xi. If we keep increasing nn then an interesting thing happens: n(ˉxnμ)N(0,σ2)

n(x¯nμ)N(0,σ2)
where μ,σ2μ,σ2 are mean and the variance of the distribution f(x)f(x).

What you're suggesting to do with Poisson is somewhat backwards: instead of summing the variables from a fixed distribution, you want to divide the fixed distribution into ever changing parts. In other words you take a variable xx from a fixed distribution f(x,λ)f(x,λ) then divide it into xixi so that ni=1xix

i=1nxix

What does CLT say about this process? Nothing. Note, how in CLT we have ever changing n(ˉxnμ)n(x¯nμ), and its changing distribution fn(x)fn(x) that converges to a fixed distribution N(0,σ2)N(0,σ2)

In your setup neither the sum xx nor its distribution f(x,λ)f(x,λ) are changing! They're fixed. They're not changing, they're not converging to anything. So, CLT has nothing to say about them.

Also, CLT doesn't say anything about the number of elements in the sum. You can have a sum of 1000 variables from Poisson(0.001) and CLT won't say anything about the sum. All it does say is that if you keep increasing N then at some point this sum will start looking like a normal distribution 1NNi=1xi,xiPoisson(0.001)1NNi=1xi,xiPoisson(0.001). In fact if N=1,000,000 you'll get the close approximation of normal distribution.

Your intuition is right only about the number of elements in the sum, i.e. than more the starting distribution is different from normal, then more elements you need to sum to get to normal. The more formal (but still informal) way would be by looking at the characteristic function of Poisson: exp(λ(exp(it)1))

exp(λ(exp(it)1))
If you λ>>1λ>>1, you get with the Taylor expansion (wrt tt) of the nested exponent: exp(iλtλ/2t2)
exp(iλtλ/2t2)
This is the characteristic function of the normal distribution N(λ,λ2)N(λ,λ2)

However, your intuition is not applied correctly: your displacing the summation in CLT with some kind of division messes things up, and renders CLT inapplicable.


+1 The prefatory material is nicely worded, very clear, and gets to the heart of the issue.
whuber

7

The problem with your example is that you are allowing the parameters to change as nn changes. The CLT tells you that for a fixed distribution with a finite mean and sd, as nn,

xμndN(0,σ)xμndN(0,σ),

where μμ and σσ are from the mean and sd of the distribution of xx.

Of course, for different distributions (i.e. higher skewed for example), larger nn's are required before the approximation derived from this theorem become reasonable. In your example, for λm=1/mλm=1/m, an n>>mn>>m is required before the normal approximation is reasonable.

EDIT

There is discussion about how the CLT does not apply to sums, but rather to standardized sums (i.e. xi/nxi/n not xixi). In theory, this is of course true: the unstandardized sum will have an undefined distribution in most cases.

However, in practice, you certainly can apply the approximation justified by the CLT to sums! If FˉxFx¯ can be approximated by a normal CDF for large nn, then certainly FxFx can too, as multiplying by a scalar preserves normality. And you can see this right away in this problem: recall that if XiPois(λ)XiPois(λ), then Y=ni=1XiPois(nλ)Y=ni=1XiPois(nλ). And we all learned in our upper division probability course that for large λλ, the CDF of a Pois(λ)Pois(λ) can be approximated quite well by a normal with μ=λμ=λ, σ2=λσ2=λ. So for any fixed λλ, we can approximate the CDF of YPois(nλ)YPois(nλ) fairly well with Φ(ynλnλ)Φ(ynλnλ) for a large enough nn if λ>0λ>0 (approximation can trivially be applied if λ=0λ=0, but not the calculation of the CDF as I have written it).

While the CLT does not readily apply to sums, the approximation based on the CLT certainly does. I believe this is what the OP was referring to when discussing applying the CLT to the sum.


5

The question is, I argue, more interesting if thought about more generally, letting the distribution of the parent Poisson depend on nn, say with parameter λnλn and λn=1λn=1 as a special case. I think it's perfectly reasonable to ask why, and how we can understand that, a central limit theorem does not hold for the sum Sn=ni=1Xi,nSn=ni=1Xi,n. After all, it's common to apply a CLT even in problems where the distributions of the components of the sum depend on nn. It's also common to decompose Poisson distributions as the distribution of a sum of Poisson variables, and then apply a CLT.

The key issue as I see it is that your construction implies the distribution of Xi,nXi,n depends on n in such a way that the parameter of the distribution of Sn does not grow in n. If you would instead have taken, for example, SnPoi(n) and made the same decomposition, the standard CLT would apply. In fact, one can think of many decompositions of a Poi(λn) distribution that allows for application of a CLT.

The Lindeberg-Feller Central Limit Theorem for triangular arrays is often used to examine convergence of such sums. As you point out, SnPoi(1) for all n, so Sn cannot be asymptotically normal. Still, examining the Lindeberg-Feller condition sheds some light on when decomposing a Poisson into a sum may lead to progress.

A version of the theorem may be found in these notes by Hunter. Let s2n=Var(Sn). The Lindeberg-Feller condition is that, ϵ>0:

1s2nni=1E[Xi,n1/n]2I(|Xi,n1/n|>ϵsn)0,n

Now, for the case at hand, the variance of the terms in the sum is dying off so quickly in n that sn=1 for every n. For fixed n, we also have that the Xi,n are iid. Thus, the condition is equivalent to nE[X1,n1/n]2I(|X1,n1/n|>ϵ)0.

But, for small ϵ and large n,

nE[X1,n1/n]2I(|X1,n1/n|>ϵ)>nϵ2P(X1,n>0)=ϵ2n[1e1/n]=ϵ2n[1(11/n+o(1/n))]=ϵ2+o(1),

which does not approach zero. Thus, the condition fails to hold. Again, this is as expected since we already know the exact distribution of Sn for every n, but going through these calculations gives some indications of why it fails: if the variance didn't die off as quickly in n you could have the condition hold.


+1 This nicely illuminates a comment by @AlexR to the question, too.
whuber
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.