ใครช่วยอธิบายการแปรปรวนเวลาแบบไดนามิกเพื่อพิจารณาความคล้ายคลึงของอนุกรมเวลาได้หรือไม่?


14

ฉันพยายามเข้าใจการวัดเวลาแปรปรวนแบบไดนามิกสำหรับการเปรียบเทียบอนุกรมเวลาเข้าด้วยกัน ฉันมีชุดข้อมูลสามชุดดังนี้:

T1 <- structure(c(0.000213652387565, 0.000535045478866, 0, 0, 0.000219346347883, 
0.000359669104424, 0.000269469145783, 0.00016051364366, 0.000181950509461, 
0.000385579332948, 0.00078170803205, 0.000747244535774, 0, 0.000622858922454, 
0.000689084895259, 0.000487983408564, 0.000224744353298, 0.000416449765747, 
0.000308388157895, 0.000198906016907, 0.000179549331179, 9.06289650172e-05, 
0.000253506844685, 0.000582896161212, 0.000386473429952, 0.000179839942451, 
0, 0.000275608635737, 0.000622665006227, 0.00036075036075, 0.00029057097196, 
0.000353232073472, 0.000394710874285, 0.000207555002076, 0.000402738622634, 
0, 0.000309693403531, 0.000506521463847, 0.000226988991034, 0.000414164423276, 
9.6590360282e-05, 0.000476689865573, 0.000377572210685, 0.000378967314069, 
9.25240562546e-05, 0.000172309813044, 0.000447627573859, 0, 0.000589333071408, 
0.000191699415317, 0.000362943471554, 0.000287549122975, 0.000311688311688, 
0.000724112961622, 0.000434656621269, 0.00122292103424, 0.00177549812586, 
0.00308008213552, 0.00164338537387, 0.00176056338028, 0.00180072028812, 
0.00258939580764, 0.00217548948513, 0.00493015612161, 0.00336344416683, 
0.00422716412424, 0.00313360554553, 0.00540144648906, 0.00425728829246, 
0.0046828437633, 0.00397219463754, 0.00501656412683, 0.00492700729927, 
0.00224424911165, 0.000634696755994, 0.00120550276557, 0.00125313283208, 
0.00164551010813, 0.00143575017947, 0.00237006940918, 0.00236686390533, 
0.00420336269015, 0.00329840900272, 0.00242005185825, 0.00326554846371, 
0.006217237596, 0.0037103784586, 0.0038714672861, 0.00455830066551, 
0.00361747518783, 0.00304147465438, 0.00476801760499, 0.00569875504121, 
0.00583855136233, 0.0050566695728, 0.0042220072126, 0.00408237321963, 
0.00255222610833, 0.00123507616303, 0.00178136133508, 0.00147434637311, 
0.00126742712294, 0.00186590371937, 0.00177226406735, 0.00249154653853, 
0.00549127279859, 0.00349072202829, 0.00348027842227, 0.00229555236729, 
0.00336862367661, 0.00383477593952, 0.00273999412858, 0.00349618180145, 
0.00376108175875, 0.00383351588171, 0.00368928059028, 0.00480028982882, 
0.00388823582602, 0.00745054380406, 0.0103754506287, 0.00822677278011, 
0.00778350981989, 0.0041831792162, 0.00537228238059, 0.00723645609231, 
0.0144428396845, 0.00893333333333, 0.0106231171714, 0.0158367059652, 
0.01811729548, 0.0207095263821, 0.0211700064641, 0.017604180993, 
0.0165804327375, 0.0188679245283, 0.0191859923629, 0.0269251008595, 
0.0351239669421, 0.0283510318573, 0.0346557651212, 0.0270022042616, 
0.0260845175767, 0.0349758630112, 0.0207069247809, 0.0106362024818, 
0.00981093510475, 0.00916507201128, 0.00887198986058, 0.0073929115025, 
0.00659077291791, 0.00716191546131, 0.00942304513143, 0.0106886280007, 
0.0123527175979, 0.0171022290546, 0.0142909490656, 0.0157642220699, 
0.0265140538974, 0.0194395354708, 0.0241685144124, 0.0229897123662, 
0.017921889568, 0.0155115839714, 0.0145263157895, 0.017609281127, 
0.0157671315949, 0.0190258751903, 0.0138453217956, 0.00958058335108, 
0.0122924304507, 0.00929741151611, 0.00885235535884, 0.00509319462505, 
0.0061314863177, 0.0063104189044, 0.00729117134253, 0.010843373494, 
0.0217755443886, 0.0181687353841, 0.0155402963498, 0.017310022503, 
0.0214746959003, 0.026357827476, 0.0194751217195, 0.0196820590462, 
0.0184317400812, 0.0130208333333, 0.0128666035951, 0.0120045731707, 
0.0122374253228, 0.00874940561103, 0.0114368092263, 0.00922893718369, 
0.00479041916168, 0.00644107774653, 0.00775830595108, 0.00829578041786, 
0.00681348095875, 0.00573782551125, 0.00772002058672, 0.0112488083889, 
0.00908907291456, 0.0157722638969, 0.00994270306707, 0.0134179772039, 
0.0126050420168, 0.0113648781554, 0.0153894803415, 0.0126959699913, 
0.0116655865198, 0.0112065745237, 0.0122006737686, 0.010251878038, 
0.010891174691, 0.0148273273273, 0.0138516532618, 0.0136552722011, 
0.00986993819758, 0.0097852677358, 0.00889011089726, 0.00816723383568, 
0.00917641660931, 0.00884466556108, 0.0182179529646, 0.0183156760639, 
0.0217806648835, 0.0171099125907, 0.0186579938377, 0.019360390076, 
0.0144603654529, 0.0177730696798, 0.0153226598566, 0.0134016909516, 
0.0126480805202, 0.0115501519757, 0.0127156322248, 0.0124326204138, 
0.0240245215806, 0.0130234933606, 0.0144222706691, 0.00854005693371, 
0.0053560967445, 0.00504132231405, 0.00288778877888, 0.00593526847816, 
0.00455653279644, 0.00433014040152, 0.00535770564135, 0.0131095962244, 
0.0126319758673, 0.0154982879798, 0.0125940464508, 0.0169948745616, 
0.0257535512184, 0.0256175663312, 0.0265191262043, 0.0228974403622, 
0.0193122555411, 0.0165794768612, 0.015658837248, 0.0168208578638, 
0.0129912843282, 0.0119498443154, 0.0112663755459, 0.00838112042347, 
0.00925767186696, 0.0113408269771, 0.0210861519924, 0.0156036134684, 
0.0121687119728, 0.011006497812, 0.0107891491985, 0.0134615384615, 
0.0147229755909, 0.015756893641, 0.0176257128046, 0.016776075857, 
0.0169553999263, 0.0179193118984, 0.0190055672874, 0.0183088625509, 
0.0155489923558, 0.0152507401094, 0.0160748342567, 0.0161532350605, 
0.0139190952588, 0.0161469457497, 0.0118186629035, 0.0109259765092, 
0.00950587391265, 0.00928986154533, 0.00815520645549, 0.00702576112412, 
0.00709539362541, 0.00827287768869, 0.0104688211197, 0.0130375888927, 
0.0160891089109, 0.0188415910677, 0.0203265044814, 0.0183175033921, 
0.0139940353292, 0.0124648170487, 0.0131685758095, 0.00957428620277, 
0.0119647893342, 0.00835800104475, 0.0101892285298, 0.00904207699194, 
0.00772134522992, 0.00740740740741, 0.00776823249863, 0.00642254601227, 
0.00484237572883, 0.00361539964823, 0.00414811817078, 0.00358072916667, 
0.00433306007729, 0.00485008818342, 0.00905280804694, 0.00931847250137, 
0.00779271381259, 0.00779912497622, 0.00908230842006, 0.0058152538582, 
0.0102777777778, 0.00807537012113, 0.00648535564854, 0.0145492582731, 
0.00694127317563, 0.00759878419453, 0.00789242911429, 0.00635050701629, 
0.00785233530492, 0.00607964332759, 0.00531968282646, 0.00361944157187, 
0.00305157155935, 0.00276327909119, 0.00318820364651, 0.00184464029514, 
0.00412550211703, 0.00516567972786, 0.00463655399342, 0.00702897308418, 
0.0100714154917, 0.00791168353266, 0.00959190791768, 0.00736, 
0.00738007380074, 0.012573964497, 0.0117919562013, 0.00842919476398, 
0.00778887565289, 0.00623967700496, 0.0062232955601, 0.00447815755803, 
0.00511135450894, 0.00502557659517, 0.00330328263712), .Tsp = c(1, 
15.9583333333333, 24), class = "ts")

T2 <- structure(c(0, 0, 0, 0, 0.000109673173942, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.66183574879e-05, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.43930526713e-05, 
0, 0, 0, 8.95255147717e-05, 0, 0, 0, 0, 0.000191699415317, 0.000207792207792, 
0, 0, 0, 0.00019727756954, 0.000205338809035, 0.000205423171734, 
0.000704225352113, 0.000450180072029, 0.000493218249075, 0.000120860526952, 
0.000410846343468, 0.000384393619066, 0.000643264105863, 0.000189915487608, 
0.000915499404925, 0.000185099490976, 0.000936568752661, 0.000451385754266, 
0.000757217226692, 0.000273722627737, 0.000187020759304, 0.000211565585331, 
0.000141823854772, 9.63948332369e-05, 0.000117536436295, 0.000287150035894, 
0, 0, 0.000400320256205, 0.000388048117967, 0.000345721694036, 
0.000296868042155, 0.000609533097647, 0.000424043252412, 0.000290360046458, 
0.000546996079861, 0.000556534644282, 0.00036866359447, 0.000275077938749, 
0.000964404699281, 0.00152310035539, 0.00113339145597, 0.00061570938517, 
0.000362877619523, 0.000472634464505, 0.000102923013586, 0.000187511719482, 
0.000294869274622, 0.00011522064754, 0.000248787162582, 0, 0.00035593521979, 
0.000392233771328, 0.000551166636046, 0.000165727543918, 0.000143472022956, 
0.00012030798845, 0.000438260107374, 0.000195713866327, 0.000184009568498, 
0.000537297394108, 0.000365096750639, 0.000102480016397, 0.000452857531021, 
0.000180848177955, 0.000770745910765, 0.00219818869252, 0.000357685773048, 
0.000362023712553, 0.000660501981506, 0.000419709560984, 0.000488949735967, 
0.00177758026886, 4e-04, 0.000475661962898, 0.000879816998064, 
0.0014942099365, 0.00378173960022, 0.00274725274725, 0.00192545729611, 
0.0016462841016, 0.00176238855484, 0.00260780478718, 0.00447289949132, 
0.0034435261708, 0.00290522941294, 0.002694416055, 0.0041329904482, 
0.00729244577412, 0.0296930503689, 0.00982375036117, 0.00453023439039, 
0.00327031170158, 0.00221573169503, 0.00211237853823, 0.00108719286801, 
0.00131815458358, 0.000983008004494, 0.00132253265002, 0.00227790432802, 
0.00247054351957, 0.00307455803228, 0.0029314767314, 0.00222755311857, 
0.00492610837438, 0.00454430699318, 0.00753880266075, 0.00671845475541, 
0.00590490003108, 0.00288356368698, 0.00294736842105, 0.00248601615911, 
0.00197089144936, 0.00326157860404, 0.00302866414278, 0.00202256759634, 
0.00258788009489, 0.00169043845747, 0.00137000737696, 0.000433463372345, 
0.000908368343363, 0.000805585392052, 0.00142653352354, 0.00189328743546, 
0.00558347292016, 0.00161899622234, 0.00162631008312, 0.00276960360048, 
0.00585673524553, 0.00519169329073, 0.0045125282033, 0.00562344544176, 
0.00322815786733, 0.00330528846154, 0.00255439924314, 0.00285823170732, 
0.00240894199268, 0.00218735140276, 0.00201826045171, 0.00168701002282, 
0.000460617227084, 0.00127007166833, 0.00109529025192, 0.000819336337567, 
0.00158170093685, 0.000588494924231, 0.00120089209127, 0.00305052430887, 
0.00161583518481, 0.00211579149837, 0.0010111223458, 0.00346270379455, 
0.00228091236495, 0.00207627581685, 0.00295140718878, 0.0022121765894, 
0.00240718451995, 0.00224131490474, 0.0031867431485, 0.00176756517897, 
0.00233382314807, 0.00178303303303, 0.00169794459339, 0.00162778079219, 
0.000737939304492, 0.00135906496331, 0.000733205022454, 0.000875060768109, 
0.00114705207616, 0.000967385295744, 0.00182179529646, 0.00359130903214, 
0.00420328620558, 0.00446345545843, 0.00376583361862, 0.00659687365553, 
0.00433810963586, 0.00353107344633, 0.00333955407131, 0.00341788091383, 
0.0024939877082, 0.00538428137212, 0.00906989151698, 0.00773778473309, 
0.0210421671775, 0.00859720803541, 0.00511487506289, 0.00406669377796, 
0.00117164616286, 0.00206611570248, 0.00107260726073, 0.00148381711954, 
0.000741761152909, 0.00104973100643, 0.00110305704381, 0.00209753539591, 
0.00452488687783, 0.00486574157506, 0.00850507033039, 0.0101159967629, 
0.0163991223005, 0.0150452373691, 0.0156443766097, 0.0112310639039, 
0.00635593220339, 0.00627766599598, 0.00583041812427, 0.00622371740959, 
0.00624897220852, 0.00420769166036, 0.00305676855895, 0.00291133656815, 
0.00120006857535, 0.00501806503412, 0.00490575781048, 0.00593119810202, 
0.00226874291018, 0.00304999336958, 0.00339087546239, 0.00541958041958, 
0.00445563734986, 0.00431438754455, 0.0038016243304, 0.0037928519329, 
0.00491460867428, 0.00460782305959, 0.00508734881935, 0.00300725278613, 
0.00390896455872, 0.00367811967345, 0.00953591862683, 0.00529614264278, 
0.00243584167029, 0.00427167876976, 0.00291056623743, 0.00227624510607, 
0.00439422473321, 0.00232246538633, 0.00317623830372, 0.00263466042155, 
0.00180200473026, 0.00190912562047, 0.0034896070399, 0.00338638672536, 
0.00548090523338, 0.00697836706211, 0.00720230473752, 0.00746268656716, 
0.00367056664373, 0.0032167269803, 0.00523135203391, 0.00299196443837, 
0.00299119733356, 0.00287306285913, 0.00154657933042, 0.00214861235452, 
0.00163006177076, 0.00157407407407, 0.00137086455858, 0.00124616564417, 
0.000790591955727, 0.00107484854407, 0.00121408336706, 0.00108506944444, 
0.00105398758637, 0.000881834215168, 0.00184409052808, 0.00237529691211, 
0.0013637249172, 0.00190222560396, 0.00264900662252, 0.00156564526951, 
0.00263888888889, 0.00183531139117, 0.00303347280335, 0.0120768352986, 
0.00365330167139, 0.00351443768997, 0.00263080970476, 0.0029703984431, 
0.00265143789517, 0.0014185834431, 0.00150557061126, 0.00144777662875, 
0.00111890957176, 0.000716405690308, 0.000797050911627, 0.000512400081984, 
0.000868526761481, 0.00113392969636, 0.00134609632067, 0.00240013715069, 
0.00128181651712, 0.00110395584177, 0.00156958493198, 0.00208, 
0.00184501845018, 0.00110946745562, 0.000736997262582, 0.00208250694169, 
0.00229084578026, 0.00137639933933, 0.00111462010032, 0.000822518735149, 
0.00200803212851, 0.000987166831194, 0.00041291032964), .Tsp = c(1, 
15.9583333333333, 24), class = "ts")

T3 <- structure(c(0.00192287148809, 0.00149812734082, 0.00192410475681, 
0.00151122625216, 0.00120640491336, 0.00167845582065, 0.00121261115602, 
0.000802568218299, 0.00109170305677, 0.00250626566416, 0.00273597811218, 
0.00242854474127, 0.00160915430002, 0.00124571784491, 0.00192943770673, 
0.00329388800781, 0.00191032700303, 0.00156168662155, 0.00174753289474, 
0.0014917951268, 0.00143639464943, 0.000543773790103, 0.000929525097178, 
0.00141560496294, 0.000966183574879, 0.000719359769805, 0.00190740419629, 
0.00137804317869, 0.00197177251972, 0.001443001443, 0.00203399680372, 
0.00158954433063, 0.00256562068285, 0.00228310502283, 0.00302053966975, 
0.00227352221056, 0.00263239393001, 0.00202608585539, 0.00272386789241, 
0.00269206875129, 0.0027045300879, 0.00276480122033, 0.00405890126487, 
0.00341070582662, 0.00351591413768, 0.00336004135436, 0.00358102059087, 
0.00257289879931, 0.00235733228563, 0.00239624269146, 0.00136103801833, 
0.000862647368926, 0.00145454545455, 0.00168959691045, 0.00246305418719, 
0.0020964360587, 0.00335371868219, 0.00390143737166, 0.00349219391947, 
0.00334507042254, 0.00255102040816, 0.00332922318126, 0.00386753686246, 
0.00246507806081, 0.00432442821449, 0.00312442565705, 0.00408318298357, 
0.00375354756019, 0.00416473854697, 0.00263942103023, 0.0028888688273, 
0.00321817321344, 0.00310218978102, 0.002150738732, 0.00296191819464, 
0.00134732662034, 0.00221708116445, 0.00152797367184, 0.00157932519742, 
0.00220077873709, 0.00207100591716, 0.00260208166533, 0.00310438494373, 
0.00311149524633, 0.00385928454802, 0.00292575886871, 0.00222622707516, 
0.00329074719319, 0.00282614641262, 0.00287542899545, 0.00221198156682, 
0.00311754997249, 0.00315623356128, 0.00287696733796, 0.00296425457716, 
0.00263875450787, 0.00208654631226, 0.00179601096512, 0.00164676821737, 
0.00206262891431, 0.00235895419697, 0.00241963359834, 0.0028610523697, 
0.00516910352976, 0.00160170848905, 0.00254951951363, 0.00275583318023, 
0.00298309579052, 0.00286944045911, 0.00288739172281, 0.00394434096636, 
0.00254428026226, 0.00285214831171, 0.0034924330617, 0.00246440306681, 
0.00266448042632, 0.00389457476678, 0.00253187449136, 0.00171276869059, 
0.00184647850171, 0.00134132164893, 0.00153860077835, 0.000990752972259, 
0.00117518677075, 0.00312927831019, 0.00188867903566, 0.0024, 
0.00269541778976, 0.00263945099419, 0.00242809114681, 0.00378173960022, 
0.00274725274725, 0.00165039196809, 0.00211665098777, 0.00290275761974, 
0.00149017416411, 0.00105244693913, 0.00309917355372, 0.00240432779002, 
0.00297314875035, 0.0015613519471, 0.00196335078534, 0.00227707441479, 
0.00279302706347, 0.00295450068938, 0.00316811446091, 0.00211501661799, 
0.00168990283059, 0.00195694716243, 0.00131815458358, 0.00112343771942, 
0.00214911555629, 0.00157701068863, 0.00171037628278, 0.00230591852421, 
0.00183217295713, 0.00102810143934, 0.00130396986381, 0.00151476899773, 
0.00188470066519, 0.00220449296662, 0.00238267895991, 0.00238639753406, 
0.00147368421053, 0.00113942407292, 0.0018192844148, 0.00152207001522, 
0.00151433207139, 0.00117096018735, 0.000862626698296, 0.00095087163233, 
0.00137000737696, 0.00119202427395, 0.00170319064381, 0.000805585392052, 
0.0012680297987, 0.00189328743546, 0.00186115764005, 0.000719553876597, 
0.000903505601735, 0.000865501125151, 0.00210241778045, 0.00146432374867, 
0.00130625816411, 0.0011895749973, 0.00135374362178, 0.00120192307692, 
0.00160832544939, 0.0015243902439, 0.00240894199268, 0.00218735140276, 
0.00230658337338, 0.00188548179022, 0.0016582220175, 0.00263086274154, 
0.00155166119022, 0.00204834084392, 0.00194670884536, 0.00308959835221, 
0.00154400411734, 0.00152526215443, 0.00343364976772, 0.00269282554337, 
0.00235928547354, 0.00230846919636, 0.00300120048019, 0.00327833023713, 
0.00347844418678, 0.00259690295277, 0.00157392833997, 0.00345536047815, 
0.00336884275699, 0.0023862129916, 0.00216094735932, 0.00478603603604, 
0.00330652368186, 0.00551636824019, 0.00313624204409, 0.00253692126484, 
0.00201631381175, 0.00243072435586, 0.00229410415233, 0.00386954118297, 
0.00298111957602, 0.00305261267732, 0.0038211692778, 0.00334759159383, 
0.00479287915098, 0.0045891294995, 0.00525831471014, 0.00800376647834, 
0.0076613299283, 0.00638604065479, 0.00587868531219, 0.00633955709944, 
0.00453494575849, 0.00617283950617, 0.00314804075884, 0.00425604358189, 
0.00536642629549, 0.00422936152908, 0.00234329232572, 0.00454545454545, 
0.00305280528053, 0.00389501993879, 0.0040267034015, 0.00275554389188, 
0.00409706901986, 0.00506904387345, 0.0065987933635, 0.00594701748063, 
0.00343473994112, 0.00579983814405, 0.00750664048966, 0.00365965233303, 
0.00467423447486, 0.00348250043531, 0.00464471968709, 0.00603621730382, 
0.00358154256205, 0.00445752733389, 0.00501562243052, 0.0035344609947, 
0.00410480349345, 0.00467578297309, 0.00265729470255, 0.00210758731433, 
0.00223771408899, 0.00218998083767, 0.00309374033206, 0.00291738496221, 
0.00184956843403, 0.00297202797203, 0.00329329717164, 0.00318889514162, 
0.00397442543632, 0.00481400437637, 0.002580169554, 0.00440303092361, 
0.00335956997504, 0.00318415000884, 0.00269284225156, 0.00242217637032, 
0.00381436745073, 0.00238326418925, 0.0037407568508, 0.00290474156343, 
0.00335156112189, 0.00227624510607, 0.00376647834275, 0.00223313979455, 
0.00197441840501, 0.00214676034348, 0.00225250591283, 0.00140002545501, 
0.0034896070399, 0.00220115137149, 0.002828854314, 0.00418702023726, 
0.00176056338028, 0.00393487109905, 0.00217939894471, 0.00331724969843, 
0.00234508884279, 0.00282099504189, 0.00239295786685, 0.00269893783737, 
0.00263828238719, 0.00250671441361, 0.00231640356898, 0.00231481481481, 
0.00127947358801, 0.0017254601227, 0.00207530388378, 0.00185655657612, 
0.00131525698098, 0.00227864583333, 0.0018737557091, 0.00220458553792, 
0.00184409052808, 0.00109629088251, 0.00253263198909, 0.00228267072475, 
0.00170293282876, 0.00134198165958, 0.000833333333333, 0.00269179004038, 
0.00198744769874, 0.00209205020921, 0.00146132066855, 0.00113981762918, 
0.00185131053298, 0.00194612311789, 0.00203956761167, 0.00111460127673, 
0.00170631335943, 0.00186142709411, 0.00183094293561, 0.00194452973084, 
0.0014944704593, 0.00153720024595, 0.00184561936815, 0.00151190626181, 
0.000897397547113, 0.00222869878279, 0.00201428309833, 0.00202391904324, 
0.00244157656087, 0.00256, 0.00184501845018, 0.00160256410256, 
0.00115813855549, 0.0016858389528, 0.001741042793, 0.0026610387227, 
0.00167193015047, 0.00201060135259, 0.00219058050383, 0.00233330341919, 
0.000963457435827), .Tsp = c(1, 15.9583333333333, 24), class = "ts")

ฉันรู้ว่า T1 และ T2 นั้นมีความสัมพันธ์กันและพิจารณาว่าเป็นความจริงพื้นฐานดังนั้นการวัดระยะทางใดควรบอกฉันว่า (T1, T2) นั้นใกล้กว่า (T2, T3) และ (T1, T3) อย่างไรก็ตามเมื่อใช้dtwใน R ฉันได้รับต่อไปนี้:

> dtw(T1, T2, k = TRUE)$distance; dtw(T1, T3, k = TRUE)$distance; dtw(T3, T2, k = TRUE)$distance
[1] 1.107791
[1] 1.568011
[1] 0.4102962

ใครช่วยอธิบายวิธีใช้การแปรปรวนเวลาแบบไดนามิกสำหรับข้อความค้นหาเพื่อนบ้านที่ใกล้ที่สุดได้ไหม


1
คุณสามารถอธิบายความหมายของคำว่า "เคียวรีเพื่อนบ้านที่ใกล้ที่สุด" ในบริบทนี้ได้อย่างไรและเกี่ยวข้องกับ dtw อย่างไร
whuber

1
@whuber: ความประทับใจของฉันเกี่ยวกับ DTW คือมันเป็นตัวชี้วัดระยะทางสำหรับอนุกรมเวลา และมีบทความนี้ระบุว่า: Faster Retrieval with a Two-Pass Dynamic-Time-Warping Lower Boundโดย Daniel Lemire และ เช่นเดียวกับรหัสที่ให้ไว้ที่code.google.com/p/lbimprovedอย่างไรก็ตามฉันพยายามทำความเข้าใจการวัดนี้ก่อนที่จะใช้
ตำนาน

คำตอบ:


23

การแปรปรวนเวลาแบบไดนามิกทำให้ข้อสันนิษฐานเฉพาะในชุดข้อมูลของคุณ: เวกเตอร์หนึ่งเป็นชุดอนุกรมเวลา stretechedไม่ใช่เชิงเส้นของอีก แต่ก็สันนิษฐานว่าค่าจริงนั้นอยู่ในระดับเดียวกัน

x=1..10000a(x)=1บาป(0.01* * * *x)(x)=1บาป(0.01234* * * *x)(x)=1000บาป(0.01* * * *x)

aaaa

DTW ไม่ใช่อาวุธวิเศษของคุณที่จะแก้ปัญหาความต้องการการจับคู่อนุกรมเวลาทั้งหมดของคุณ โดยเฉพาะอย่างยิ่งมันทำให้สมมติฐานกับชนิดของความคล้ายคลึงกันที่คุณมีความสนใจใน หากไม่ตรงกับข้อมูลของคุณก็จะไม่ทำงานได้ดี ตัดสินจากชุดข้อมูลที่คุณแชร์คุณไม่จำเป็นต้องจัดตำแหน่งชั่วคราว (ซึ่ง DTW ทำ) แต่จริงๆแล้วมีการทำให้เป็นมาตรฐานที่เหมาะสมและอาจเป็นการแปลงฟูริเยร์แทน Treshhold ข้ามระยะทางอาจทำงานได้ดีสำหรับคุณดูตัวอย่าง:

  • ค้นหาความคล้ายคลึงกันของอนุกรมเวลาตามเกณฑ์การค้นหา
    Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey Pryakhin และ Matthias Renz, EDBT 2006

+1 ขอบคุณสำหรับคำแนะนำของคุณ คุณช่วยชี้ให้ฉันดูงานการแปลงฟูริเยร์ได้ไหม? และในที่สุดฉันก็สงสัย - มีการใช้งานจริงที่ฉันสามารถลองได้หรือไม่? ฉันหมายถึงฐานข้อมูลบางตัวที่ใช้งานจริง
ตำนาน

1
ในการค้นหาเพิ่มเติมเกี่ยวกับเรื่องนี้ฉันเจองานแสดงสัญลักษณ์ SAX จาก Keogh et อัลของ Univ ริมแม่น้ำ คุณจะมีความคิดเห็นเกี่ยวกับเรื่องนี้ไหม?
ตำนาน

เพื่อนทดลองกับ SAX สำหรับอนุกรมเวลาการเคลื่อนไหว (เช่นการจำแนกการเคลื่อนไหว) มันไม่ได้ผลสำหรับเขา นั่นเป็นเหตุผลที่ฉันไม่ได้แนะนำ Keogh ผลิตเอกสารอย่างบ้าคลั่ง แต่พวกเขาไม่ค่อยเชื่อ IMHO เขาต้องเสนอระยะทางอย่างน้อย 10 ครั้งสำหรับอนุกรมเวลาซึ่งแน่นอนว่ามีประสิทธิภาพสูงกว่าซึ่งกันและกัน
จบแล้ว - Anony-Mousse

2
@ แอนนี่ฉันใช้ความไม่พอใจกับ“ Keogh สร้างเอกสารอย่างบ้าคลั่ง แต่พวกเขาไม่ค่อยเชื่อ IMHO เขาต้องเสนอฟังก์ชั่นระยะทางอย่างน้อย 10 ครั้งสำหรับอนุกรมเวลาซึ่งแน่นอนว่ามีประสิทธิภาพสูงกว่าซึ่งกันและกันทั้งหมด” ฉันไม่ได้เสนอ“ ฟังก์ชั่นระยะทางอย่างน้อย 10 ตัวสำหรับอนุกรมเวลา” ฉันสนับสนุนอย่างยิ่งสำหรับฟังก์ชันระยะ 2 สำหรับอนุกรมเวลา 1) ระยะทางแบบยุคลิด (ED): สองพันปี 2) DTW: 50 ปีสองมาตรการนี้ใช้ใน 90% ของเอกสารของฉันและฉันก็ไม่ได้เสนอหรือประดิษฐ์ ฉันเสนอการเปลี่ยนแปลงเล็กน้อยทั้ง ED และ DTW คุณพูดว่า“ พวกเขาไม่ค่อยน่าเชื่อถือเท่า IMHO” ...

2
ฉันทดสอบกับการทดลองที่ทำซ้ำได้ในชุดข้อมูลสาธารณะทุกชุดในโลกและแจกรหัสทั้งหมดของฉัน บางทีชาวบ้านบางคนที่นี่กำลังใช้ความคิดของฉันอย่างหนัก แต่มากกว่า 2,000 คนใช้ความคิดอย่างใดอย่างหนึ่งของฉัน (ตี Google ขึ้น) ดังนั้นบางทีปัญหาอาจไม่ตรงกับความคิดของฉัน

4

ในปี 1980 การแปรปรวนเวลาแบบไดนามิกเป็นวิธีที่ใช้สำหรับการจับคู่แม่แบบในการรู้จำเสียง จุดมุ่งหมายคือพยายามจับคู่อนุกรมเวลาของคำพูดที่วิเคราะห์แล้วกับเทมเพลตที่เก็บไว้ซึ่งมักจะเป็นทั้งคำ ปัญหาคือคนพูดด้วยอัตราที่แตกต่างกัน DTW ถูกใช้เพื่อลงทะเบียนรูปแบบที่ไม่รู้จักกับเทมเพลต มันถูกเรียกว่าการจับคู่ "แผ่นยาง" โดยทั่วไปคุณจะต้องค้นหาความเป็นไปได้ที่ จำกัด ของวิธีการยืดเวลาในท้องถิ่นเพื่อปรับให้เหมาะสมกับโลก วิธีการนี้แสดงให้เห็นว่าคล้ายกับโมเดลของมาร์คอฟที่ซ่อนอยู่


4

ก่อนอื่นคุณพูดว่า "การวัดเวลาแปรปรวนแบบไดนามิก" อย่างไรก็ตาม DTW เป็นตัววัดระยะทาง แต่ไม่ใช่ตัวชี้วัด

Paper [a] เปรียบเทียบ DTW กับ 12 ทางเลือกใน 43 ชุดข้อมูล DTW ทำงานได้ดีมากสำหรับปัญหาส่วนใหญ่

หากคุณต้องการเรียนรู้เพิ่มเติมเกี่ยวกับ DTW คุณสามารถดูได้ที่ Keoghs tutorial http://www.cs.ucr.edu/~eamonn/Keogh_Time_Series_CDrom.zip Keoghs (เตือน 500 เมกะไบต์)

ผ่านคือเพ็กกี้

นอกจากนี้ยังมีการสอนเกี่ยวกับ SAX http://www.cs.ucr.edu/~eamonn/SIGKDD_2007.ppt

[a] Xiaoyue Wang, Hui Ding, Goce Trajcevski, Peter Scheuermann, Eamonn J. Keogh: การเปรียบเทียบการทดลองของวิธีการเป็นตัวแทนและมาตรการระยะทางสำหรับชุดข้อมูล Data CoRR abs / 1012.2789: (2010)


+1 ขอบคุณมากสำหรับคำตอบของคุณ ฉันแก้ไขคำถามของฉันแล้ว โดยตอนนี้ฉันเข้าใจว่าคุณเป็นผู้บุกเบิกในซีรีย์เวลา มันจะดีถ้าคุณมีคำแนะนำบางอย่างเกี่ยวกับกรณีเฉพาะของฉันซึ่งฉันใส่ไว้ในความคิดเห็นอย่างใดอย่างหนึ่ง: ข้อมูลอนุกรมเวลาที่ฉันมีอยู่ในเครือข่ายที่มีลักษณะคล้ายทวิตเตอร์ภายในและซีรีส์นั้นแทนจำนวนข้อความที่สร้าง หัวข้อเรื่อง ฉันต้องการค้นหาหัวข้ออื่นที่มีไทม์ไลน์คล้ายกันกับหัวข้อที่กำหนด ขอบคุณอีกครั้งสำหรับเวลาของคุณ
ตำนาน
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.