ดูเพิ่มเติมคำถามที่คล้ายกันใน stats.SE
ในการเพิ่มอัลกอริทึมเช่นAdaBoostและLPBoostเป็นที่รู้กันว่าผู้เรียนที่ "อ่อนแอ" ที่จะรวมกันนั้นต้องทำงานได้ดีกว่าโอกาสที่จะเป็นประโยชน์จากวิกิพีเดีย:
ตัวแยกประเภทที่ใช้อาจอ่อนแอ (เช่นแสดงอัตราข้อผิดพลาดที่สำคัญ) แต่ตราบใดที่ประสิทธิภาพไม่ได้สุ่ม (ทำให้เกิดข้อผิดพลาดที่อัตรา 0.5 สำหรับการจำแนกแบบไบนารี) พวกเขาจะปรับปรุงตัวแบบสุดท้าย แม้แต่ตัวแยกประเภทที่มีอัตราความผิดพลาดสูงกว่าที่คาดไว้จากตัวจําแนกแบบสุ่มจะมีประโยชน์เนื่องจากจะมีสัมประสิทธิ์เชิงลบในการรวมกันเชิงเส้นสุดท้ายของตัวจําแนกประเภท
อะไรคือประโยชน์ของการใช้ความอ่อนแอเมื่อเทียบกับผู้เรียนที่แข็งแกร่ง? (เช่นทำไมไม่ส่งเสริมด้วยวิธีการเรียนรู้ "แข็งแรง" - เรามีแนวโน้มที่จะมีน้ำหนักเกินหรือไม่)
มีความแข็งแรง "ดีที่สุด" สำหรับผู้เรียนที่อ่อนแอหรือไม่? และสิ่งนี้เกี่ยวข้องกับจำนวนผู้เรียนในวงดนตรีหรือไม่?
มีทฤษฎีใดบ้างที่จะสำรองคำตอบสำหรับคำถามเหล่านี้