พื้นหลังเล็ก ๆ
ฉันกำลังทำการตีความการวิเคราะห์การถดถอย แต่ฉันสับสนกับความหมายของ r, r กำลังสองและส่วนเบี่ยงเบนมาตรฐานที่เหลือ ฉันรู้คำจำกัดความ:
ลักษณะเฉพาะ
r วัดความแข็งแรงและทิศทางของความสัมพันธ์เชิงเส้นระหว่างตัวแปรสองตัวบนสเปลตเตอร์ล็อต
R-squared เป็นการวัดทางสถิติว่าข้อมูลอยู่ใกล้กับเส้นการถดถอยที่เหมาะสมหรือไม่
ค่าเบี่ยงเบนมาตรฐานส่วนที่เหลือเป็นคำทางสถิติที่ใช้อธิบายความเบี่ยงเบนมาตรฐานของจุดที่เกิดขึ้นรอบฟังก์ชันเชิงเส้นและเป็นการประมาณความแม่นยำของตัวแปรตามที่วัด ( ไม่ทราบว่าหน่วยคืออะไรข้อมูลใด ๆ เกี่ยวกับหน่วยที่นี่จะเป็นประโยชน์ )
(ที่มา: ที่นี่ )
คำถาม
แม้ว่าฉันจะ "เข้าใจ" ลักษณะของตัวละคร แต่ฉันเข้าใจว่าเงื่อนไขเหล่านี้รบกวนการสรุปเกี่ยวกับชุดข้อมูล ฉันจะแทรกตัวอย่างเล็ก ๆ น้อย ๆ ที่นี่บางทีนี่อาจเป็นคำแนะนำในการตอบคำถามของฉัน ( อย่าลังเลที่จะใช้ตัวอย่างของคุณเอง!)
ตัวอย่าง
นี่ไม่ใช่คำถามวิธีการทำงานอย่างไรก็ตามฉันค้นหาในหนังสือของฉันเพื่อรับตัวอย่างง่ายๆ (ชุดข้อมูลปัจจุบันที่ฉันกำลังวิเคราะห์ซับซ้อนเกินไปและใหญ่เกินกว่าจะแสดงได้ที่นี่)
สุ่มเลือกแปลง 20 แปลงขนาด 20x4 เมตรในไร่ข้าวโพดขนาดใหญ่ สำหรับแต่ละแปลงความหนาแน่นของพืช (จำนวนพืชในแปลง) และน้ำหนักเฉลี่ยของซัง (กรัมของเมล็ดต่อซัง) ผลลัพธ์เป็น givin ในตารางต่อไปนี้:
(ที่มา: สถิติสำหรับวิทยาศาสตร์เพื่อชีวิต )
╔═══════════════╦════════════╦══╗
║ Platn density ║ Cob weight ║ ║
╠═══════════════╬════════════╬══╣
║ 137 ║ 212 ║ ║
║ 107 ║ 241 ║ ║
║ 132 ║ 215 ║ ║
║ 135 ║ 225 ║ ║
║ 115 ║ 250 ║ ║
║ 103 ║ 241 ║ ║
║ 102 ║ 237 ║ ║
║ 65 ║ 282 ║ ║
║ 149 ║ 206 ║ ║
║ 85 ║ 246 ║ ║
║ 173 ║ 194 ║ ║
║ 124 ║ 241 ║ ║
║ 157 ║ 196 ║ ║
║ 184 ║ 193 ║ ║
║ 112 ║ 224 ║ ║
║ 80 ║ 257 ║ ║
║ 165 ║ 200 ║ ║
║ 160 ║ 190 ║ ║
║ 157 ║ 208 ║ ║
║ 119 ║ 224 ║ ║
╚═══════════════╩════════════╩══╝
ก่อนอื่นฉันจะสร้าง scatterplot เพื่อดูข้อมูล:
ดังนั้นฉันสามารถคำนวณ r, R 2และส่วนเบี่ยงเบนมาตรฐานที่เหลือได้
การทดสอบความสัมพันธ์ครั้งแรก:
Pearson's product-moment correlation
data: X and Y
t = -11.885, df = 18, p-value = 5.889e-10
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.9770972 -0.8560421
sample estimates:
cor
-0.9417954
และข้อสรุปที่สองของบรรทัดการถดถอย:
Residuals:
Min 1Q Median 3Q Max
-11.666 -6.346 -1.439 5.049 16.496
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 316.37619 7.99950 39.55 < 2e-16 ***
X -0.72063 0.06063 -11.88 5.89e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.619 on 18 degrees of freedom
Multiple R-squared: 0.887, Adjusted R-squared: 0.8807
F-statistic: 141.3 on 1 and 18 DF, p-value: 5.889e-10
ดังนั้นตามการทดสอบนี้: r = -0.9417954
, R-squared: 0.887
และข้อผิดพลาดมาตรฐานที่เหลือ: 8.619
ค่าเหล่านี้บอกอะไรเราเกี่ยวกับชุดข้อมูล? (ดูคำถาม )