สมมติว่าฉันมีรูปแบบการทำนายที่สร้างความน่าจะเป็นสำหรับแต่ละคลาส ตอนนี้ฉันรู้แล้วว่ามีหลายวิธีในการประเมินโมเดลดังกล่าวหากฉันต้องการใช้ความน่าจะเป็นเหล่านั้นสำหรับการจัดหมวดหมู่ (ความแม่นยำการเรียกคืนและอื่น ๆ ) ฉันยังจำได้ว่าเส้นโค้ง ROC และพื้นที่ใต้นั้นสามารถใช้เพื่อกำหนดว่าแบบจำลองแตกต่างกันอย่างไรระหว่างคลาส นั่นไม่ใช่สิ่งที่ฉันถาม
ฉันสนใจที่จะประเมินการสอบเทียบโมเดล ฉันรู้ว่ากฎการให้คะแนนเช่นคะแนน Brierจะมีประโยชน์สำหรับงานนี้ ไม่เป็นไรและฉันจะรวมบางสิ่งบางอย่างไว้ในบรรทัดเหล่านั้น แต่ฉันไม่แน่ใจว่าการวัดที่ใช้งานง่ายเช่นนี้จะใช้กับบุคคลทั่วไปได้อย่างไร ฉันกำลังมองหาบางสิ่งที่มองเห็นได้ชัดเจนขึ้น ฉันต้องการให้บุคคลตีความผลลัพธ์เพื่อให้สามารถเห็นว่าแบบจำลองทำนายบางสิ่งบางอย่าง 70% มีแนวโน้มที่จะเกิดขึ้นจริงหรือไม่ว่าจะเกิดขึ้นจริง ~ 70% ของเวลาเป็นต้น
ฉันได้ยินเรื่องแผนการ QQ (แต่ไม่เคยใช้) และในตอนแรกฉันคิดว่านี่คือสิ่งที่ฉันกำลังมองหา แต่ก็ดูเหมือนว่ามีความหมายจริงๆสำหรับการเปรียบเทียบสองการแจกแจงความน่าจะเป็น นั่นไม่ใช่สิ่งที่ฉันมี ฉันมีความน่าจะเป็นที่คาดการณ์ของฉันจากหลาย ๆ กรณีและไม่ว่าจะเกิดขึ้นจริงหรือไม่:
Index P(Heads) Actual Result
1 .4 Heads
2 .3 Tails
3 .7 Heads
4 .65 Tails
... ... ...
พล็อต QQ เป็นสิ่งที่ฉันต้องการจริงๆหรือฉันกำลังมองหาอย่างอื่นอยู่หรือ หากพล็อต QQ คือสิ่งที่ฉันควรจะใช้เป็นวิธีที่ถูกต้องในการแปลงข้อมูลของฉันเป็นการแจกแจงความน่าจะเป็นคืออะไร?
ฉันคิดว่าฉันสามารถเรียงลำดับคอลัมน์ทั้งสองโดยคาดการณ์ความน่าจะเป็นแล้วสร้างถังขยะ นั่นคือประเภทของสิ่งที่ฉันควรจะทำหรือฉันปิดอยู่ในความคิดของฉันที่ไหนสักแห่ง? ฉันคุ้นเคยกับเทคนิคการแยกส่วนต่าง ๆ แต่มีวิธีเฉพาะในการลดทอนลงในถังขยะที่เป็นมาตรฐานสำหรับสิ่งประเภทนี้หรือไม่?