Keras: ทำไมสูญเสียลดลงในขณะที่ val_loss เพิ่มขึ้น?


13

ฉันตั้งค่าการค้นหากริดสำหรับกลุ่มของพารามิเตอร์ ฉันกำลังพยายามหาพารามิเตอร์ที่ดีที่สุดสำหรับ Keras neural net ที่จัดหมวดหมู่แบบไบนารี เอาต์พุตเป็น 1 หรือ 0 มีคุณลักษณะประมาณ 200 รายการ เมื่อฉันทำการค้นหากริดฉันได้รับแบบจำลองมากมายและพารามิเตอร์ของพวกเขา แบบจำลองที่ดีที่สุดมีพารามิเตอร์เหล่านี้:

Epochs           : 20
Batch Size       : 10
First Activation : sigmoid
Learning Rate    : 1
First Init       : uniform

และผลลัพธ์สำหรับโมเดลนั้นคือ:

        loss       acc  val_loss   val_acc
1   0.477424  0.768542  0.719960  0.722550
2   0.444588  0.788861  0.708650  0.732130
3   0.435809  0.794336  0.695768  0.732682
4   0.427056  0.798784  0.684516  0.721137
5   0.420828  0.803048  0.703748  0.720707
6   0.418129  0.806206  0.730803  0.723717
7   0.417522  0.805206  0.778434  0.721936
8   0.415197  0.807549  0.802040  0.733849
9   0.412922  0.808865  0.823036  0.731761
10  0.410463  0.810654  0.839087  0.730410
11  0.407369  0.813892  0.831844  0.725252
12  0.404436  0.815760  0.835217  0.723102
13  0.401728  0.816287  0.845178  0.722488
14  0.399623  0.816471  0.842231  0.717514
15  0.395746  0.819498  0.847118  0.719541
16  0.393361  0.820366  0.858291  0.714873
17  0.390947  0.822025  0.850880  0.723348
18  0.388478  0.823341  0.858591  0.721014
19  0.387062  0.822735  0.862971  0.721936
20  0.383744  0.825762  0.880477  0.721322

ดังนั้นฉันจึงเรียกใช้โมเดลนั้นใหม่อีกครั้ง (มี 150 อัน) และนี่คือผลลัพธ์ที่ฉันได้รับ ฉันไม่แน่ใจว่าทำไมสิ่งนี้จึงเกิดขึ้นเป็นเรื่องปกติหรือฉันทำผิดหรือเปล่า?

พล็อตของการสูญเสีย, ACC, val_locc และ val_acc

         loss       acc  val_loss   val_acc
1    0.476387  0.769279  0.728492  0.722550
2    0.442604  0.789941  0.701136  0.730472
3    0.431936  0.796915  0.676995  0.723655
4    0.426349  0.800258  0.728562  0.721997
5    0.421143  0.803653  0.739789  0.716900
6    0.416389  0.807575  0.720850  0.711373
7    0.413163  0.809154  0.751340  0.718128
8    0.409013  0.811418  0.780856  0.723409
9    0.405871  0.813576  0.789046  0.719295
10   0.402579  0.815524  0.804526  0.720278
11   0.400152  0.816813  0.811905  0.719541
12   0.400304  0.817261  0.787449  0.713154
13   0.397917  0.817945  0.804222  0.721567
14   0.395266  0.819524  0.801722  0.723348
15   0.393957  0.820156  0.793889  0.719049
16   0.391780  0.821103  0.794179  0.721199
17   0.390206  0.822393  0.806803  0.722611
18   0.388075  0.823604  0.817850  0.723901
19   0.385985  0.824762  0.841883  0.722058
20   0.383762  0.826867  0.857071  0.720830
21   0.381493  0.827947  0.864432  0.718005
22   0.379520  0.829210  0.872835  0.720400
23   0.377488  0.830526  0.879962  0.721383
24   0.375619  0.830736  0.887850  0.723839
25   0.373684  0.832000  0.891267  0.724822
26   0.372023  0.832368  0.891562  0.724638
27   0.370155  0.833184  0.892528  0.724883
28   0.368511  0.834684  0.887061  0.724699
29   0.366522  0.835606  0.883541  0.724883
30   0.364500  0.836422  0.882823  0.724515
31   0.362612  0.836737  0.882611  0.722427
32   0.360742  0.837448  0.884282  0.720769
33   0.359093  0.838738  0.884339  0.719418
34   0.357436  0.839080  0.888006  0.716470
35   0.355723  0.840633  0.892658  0.713830
36   0.354305  0.840764  0.897303  0.710575
37   0.352758  0.841343  0.901147  0.709408
38   0.351414  0.842054  0.899546  0.707934
39   0.349619  0.843370  0.905133  0.704864
40   0.347993  0.844475  0.910400  0.701363
41   0.346402  0.845581  0.915086  0.699337
42   0.345014  0.845818  0.918697  0.697617
43   0.343708  0.846607  0.923413  0.695652
44   0.342335  0.847292  0.930816  0.693441
45   0.340745  0.848081  0.940737  0.689020
46   0.339623  0.848713  0.948633  0.685274
47   0.338846  0.849845  0.952492  0.683923
48   0.337724  0.850134  0.961147  0.683984
49   0.336247  0.850976  0.967792  0.683309
50   0.334444  0.851529  0.984107  0.680238
51   0.333086  0.852029  1.001179  0.678273
52   0.331756  0.853240  1.016130  0.674589
53   0.330738  0.854003  1.024875  0.673606
54   0.329548  0.854030  1.040597  0.670044
55   0.328813  0.855372  1.041871  0.668509
56   0.327120  0.855898  1.050617  0.668755
57   0.325962  0.855819  1.064525  0.666667
58   0.324602  0.856898  1.078078  0.662859
59   0.323560  0.857241  1.085016  0.661938
60   0.322243  0.858662  1.093114  0.661140
61   0.320680  0.858872  1.117269  0.656841
62   0.319267  0.860004  1.138825  0.654815
63   0.318132  0.860636  1.154959  0.653648
64   0.316956  0.861531  1.180216  0.649718
65   0.315543  0.862320  1.198216  0.648428
66   0.314405  0.862610  1.218663  0.647384
67   0.313501  0.863873  1.245123  0.644252
68   0.312513  0.864558  1.262998  0.643147
69   0.311567  0.865347  1.283213  0.641918
70   0.310069  0.866505  1.302089  0.640752
71   0.309087  0.866611  1.318972  0.641857
72   0.307767  0.867321  1.361531  0.638787
73   0.306750  0.866742  1.382162  0.638357
74   0.305760  0.867242  1.378694  0.641611
75   0.305289  0.867769  1.393187  0.642594
76   0.304089  0.868479  1.435852  0.635532
77   0.302472  0.869006  1.435019  0.639892
78   0.301118  0.869400  1.447060  0.639216
79   0.300629  0.870058  1.488730  0.634918
80   0.299364  0.870295  1.488376  0.636576
81   0.298380  0.870822  1.504260  0.634611
82   0.297253  0.871664  1.525655  0.634058
83   0.296760  0.871875  1.538717  0.632891
84   0.295502  0.872585  1.551178  0.633751
85   0.294569  0.872927  1.562323  0.633137
86   0.294780  0.872585  1.555390  0.629944
87   0.293796  0.872743  1.587800  0.627057
88   0.293029  0.873427  1.608010  0.627549
89   0.291822  0.874006  1.626047  0.627303
90   0.290643  0.874533  1.651658  0.626689
91   0.289920  0.875270  1.681202  0.623925
92   0.289661  0.875375  1.683188  0.626505
93   0.288103  0.876323  1.706517  0.625031
94   0.287917  0.876770  1.722031  0.624417
95   0.287020  0.877270  1.743283  0.624478
96   0.286750  0.877639  1.762506  0.624048
97   0.285712  0.877481  1.780433  0.622267
98   0.284635  0.878639  1.789917  0.622206
99   0.283627  0.879191  1.862468  0.616925
100  0.282214  0.879455  1.915643  0.612810
101  0.281749  0.879244  1.881444  0.615205
102  0.281710  0.879639  1.916390  0.614223
103  0.280293  0.880350  1.938470  0.612810
104  0.279233  0.881008  1.979127  0.609187
105  0.279204  0.880297  1.997384  0.606546
106  0.278264  0.881876  2.009851  0.607652
107  0.277511  0.882876  2.038530  0.606116
108  0.277521  0.881771  2.034664  0.604888
109  0.276264  0.882534  2.058179  0.604827
110  0.275230  0.883587  2.078912  0.604274
111  0.275147  0.883034  2.073272  0.603537
112  0.273717  0.883797  2.100150  0.600958
113  0.273372  0.883692  2.114416  0.601634
114  0.272626  0.883692  2.129778  0.601941
115  0.272001  0.883929  2.138462  0.601326
116  0.271344  0.884508  2.148771  0.602923
117  0.270134  0.884692  2.115114  0.604581
118  0.269494  0.885140  2.135719  0.603107
119  0.268803  0.885587  2.162380  0.601695
120  0.268593  0.886219  2.183793  0.599239
121  0.267141  0.886035  2.195810  0.600221
122  0.266565  0.886772  2.192426  0.600528
123  0.265715  0.886561  2.260088  0.596598
124  0.264788  0.887693  2.253029  0.597335
125  0.263643  0.887693  2.289285  0.597028
126  0.263612  0.887956  2.311600  0.596536
127  0.261996  0.888588  2.339754  0.595063
128  0.263069  0.887588  2.364881  0.594449
129  0.261684  0.889272  2.321568  0.596598
130  0.261304  0.889509  2.389324  0.591562
131  0.260336  0.889640  2.403542  0.593098
132  0.259131  0.890272  2.413964  0.592115
133  0.258756  0.890193  2.422454  0.591992
134  0.257794  0.891009  2.454598  0.591255
135  0.257187  0.891009  2.459366  0.590088
136  0.257249  0.891088  2.448625  0.591624
137  0.256344  0.891404  2.495104  0.589167
138  0.255590  0.891720  2.495032  0.589781
139  0.254596  0.892299  2.496050  0.589229
140  0.254308  0.892588  2.510471  0.589536
141  0.253694  0.892509  2.519580  0.589720
142  0.252973  0.893088  2.527464  0.590273
143  0.252714  0.893194  2.553902  0.589106
144  0.252190  0.893720  2.536494  0.590457
145  0.251870  0.893352  2.553102  0.588799
146  0.250437  0.893694  2.565141  0.589597
147  0.250066  0.894141  2.575599  0.588553
148  0.249596  0.894273  2.590722  0.588123
149  0.248569  0.894983  2.596031  0.588676
150  0.248096  0.895273  2.602810  0.588860

คุณเป็นกรณีที่แปลกเพราะการสูญเสียการตรวจสอบของคุณจะไม่เล็ก อัตราการเรียนรู้ของคุณสูงอย่างน่าสงสัยอัตราการเรียนรู้ทั่วไปอยู่ที่ประมาณ 0.001 คุณใช้อัตราการเรียนรู้แบบใดในการค้นหากริด
ฮิวจ์

1
ฉันใช้ [1.000, 0.100, 0.010, 0.001]
user1367204

มันอาจจะช้าไปหน่อย แต่คุณแน่ใจหรือว่าข้อมูลของคุณเป็นสิ่งที่คุณคิด? โดยเฉพาะอย่างยิ่งเป็นเรื่องแปลกมากที่ความแม่นยำในการตรวจสอบของคุณจะซบเซาในขณะที่การสูญเสียการตรวจสอบเพิ่มขึ้น การลดลงของมูลค่าการสูญเสียควรควบคู่ไปกับการเพิ่มความแม่นยำในสัดส่วน คุณจะเห็นว่าในกรณีของการสูญเสียการฝึกอบรม เนื่องจากการสูญเสียการฝึกอบรมลดลงความแม่นยำจึงเพิ่มขึ้น อย่างไรก็ตามนี่ไม่ใช่กรณีของข้อมูลการตรวจสอบที่คุณมี ดังนั้นฉันจะตรวจสอบอย่างแน่นอนว่าคุณได้รับการสูญเสียการตรวจสอบและ ac
matt_m

คำตอบ:


17

(อาจซ้ำกัน) ดูเหมือนว่าแบบจำลองของคุณเหมาะสมเกินกว่าที่จะจำข้อมูลการฝึกอบรมได้ โดยทั่วไปรูปแบบที่เหมาะสมกว่าสามารถปรับปรุงได้โดยการเพิ่มการออกกลางคันมากขึ้นหรือการฝึกอบรมและการตรวจสอบในชุดข้อมูลที่มีขนาดใหญ่ขึ้น อธิบายเพิ่มเติมเกี่ยวกับข้อมูล / คุณสมบัติและรูปแบบสำหรับแนวคิดเพิ่มเติม


3
มันเป็นเรื่องที่แปลกประหลาดมาก val_loss ไม่เคยลดลงราวกับว่าไม่มีข้อต่อใด ๆ ก่อนที่จะเริ่มทำการ overfitting คุณรู้หรือไม่ว่าอะไรที่สามารถอธิบายได้
ฮิวจ์

3

บางทีชุดข้อมูลการฝึกอบรมของคุณอาจมีคุณสมบัติที่แตกต่างจากชุดข้อมูลการตรวจสอบของคุณ มันเหมือนกับการฝึกอบรมเครือข่ายเพื่อแยกแยะความแตกต่างระหว่างไก่กับเครื่องบิน แต่จากนั้นคุณแสดงแอปเปิ้ล ยิ่งคุณฝึกฝนมันมากเท่าไหร่ก็ยิ่งดีเท่านั้นที่จะแยกไก่ออกจากเครื่องบิน แต่ยิ่งแย่ลงเมื่อมันแสดงแอปเปิ้ล ฉันมีสถานการณ์เดียวกันและกำลังคิดที่จะใช้ Generative Adversarial Network เพื่อตรวจสอบว่าจุดข้อมูลการตรวจสอบเป็น "คนต่างด้าว" กับชุดข้อมูลการฝึกอบรมหรือไม่

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.