ในบทความ Wikipedia เกี่ยวกับANOVAมันบอกว่า
ในรูปแบบที่ง่ายที่สุด ANOVA จัดให้มีการทดสอบทางสถิติว่าค่าเฉลี่ยของหลาย ๆ กลุ่มมีค่าเท่ากันหรือไม่และดังนั้นจึงทำให้การทดสอบ t-test เป็นมากกว่าสองกลุ่ม
ความเข้าใจของฉันเกี่ยวกับเรื่องนี้คือ ANOVA นั้นเหมือนกับ t-test เมื่อเปรียบเทียบกับกลุ่มสองกลุ่ม
อย่างไรก็ตามในตัวอย่างง่าย ๆ ของฉันด้านล่าง (ใน R) การวิเคราะห์ความแปรปรวนและการทดสอบ t ให้ค่า p ที่เหมือนกัน แต่แตกต่างกันเล็กน้อย มีใครอธิบายได้บ้างไหม
x1=rnorm(100,mean=0,sd=1)
x2=rnorm(100,mean=0.5,sd=1)
y1=rnorm(100,mean=0,sd=10)
y2=rnorm(100,mean=0.5,sd=10)
t.test(x1,x2)$p.value # 0.0002695961
t.test(y1,y2)$p.value # 0.8190363
df1=as.data.frame(rbind(cbind(x=x1,type=1), cbind(x2,type=2)))
df2=as.data.frame(rbind(cbind(x=y1,type=1), cbind(y2,type=2)))
anova(lm(x~type,df1))$`Pr(>F)`[1] # 0.0002695578
anova(lm(x~type,df2))$`Pr(>F)`[1] # 0.8190279