เทคนิคการสร้างแบบจำลองการทำนายบางอย่างได้รับการออกแบบมาเพื่อการจัดการตัวทำนายอย่างต่อเนื่องในขณะที่เทคนิคอื่น ๆ นั้นดีกว่าสำหรับการจัดการกับตัวแปรเด็ดขาด แน่นอนว่ามีเทคนิคในการแปลงประเภทหนึ่งไปเป็นอีกประเภทหนึ่ง (discretization, ตัวแปรจำลอง) อย่างไรก็ตามมีเทคนิคการสร้างแบบจำลองการคาดการณ์ที่ออกแบบมาเพื่อจัดการอินพุตทั้งสองประเภทในเวลาเดียวกันโดยไม่ต้องเปลี่ยนประเภทของคุณสมบัติหรือไม่ ถ้าเป็นเช่นนั้นเทคนิคการสร้างแบบจำลองเหล่านี้มีแนวโน้มที่จะทำงานได้ดีขึ้นกับข้อมูลที่พวกเขาเป็นแบบธรรมชาติมากขึ้น?
สิ่งที่ใกล้เคียงที่ฉันรู้จะเป็นที่มักจะต้นไม้ตัดสินใจจัดการกับข้อมูลที่ไม่ต่อเนื่องได้ดีและพวกเขาจัดการข้อมูลอย่างต่อเนื่องโดยไม่ต้องมีขึ้นด้านหน้าไม่ต่อเนื่อง อย่างไรก็ตามนี่ไม่ใช่สิ่งที่ฉันกำลังมองหาเนื่องจากการแยกคุณสมบัติอย่างต่อเนื่องได้อย่างมีประสิทธิภาพเป็นเพียงการแยกส่วนแบบไดนามิก
สำหรับการอ้างอิงต่อไปนี้เป็นคำถามที่เกี่ยวข้องและไม่ซ้ำกัน: