อ้างอิงจากบทความที่น่าสนใจมากในนิตยสาร Quanta: "หลักฐานอันยาวนาน, พบและหลงทาง" - ได้รับการพิสูจน์แล้วว่าได้รับเวกเตอร์มีหลายตัวแปร เสียนกระจายและช่วงเวลาที่กำหนดแน่นิ่งวิธีการของส่วนประกอบที่สอดคล้องกันของแล้ว
(ความไม่เท่าเทียมกันแบบเกาส์สหสัมพันธ์หรือ GCI ดูhttps://arxiv.org/pdf/1512.08776.pdfสำหรับการกำหนดทั่วไปมากขึ้น)
ดูเหมือนว่าจะเป็นเรื่องที่ดีและเรียบง่ายจริงๆและบทความบอกว่ามันมีผลที่ตามมาสำหรับช่วงความมั่นใจร่วม อย่างไรก็ตามดูเหมือนว่าไม่มีประโยชน์เลยสำหรับฉัน สมมติว่าเรากำลังประมาณค่าพารามิเตอร์ และเราพบตัวประมาณซึ่งเป็น (อาจจะไม่เชิง) ร่วมกัน (ตัวอย่างเช่น MLE ประมาณ) . จากนั้นถ้าฉันคำนวณช่วงเวลา 95% - ความมั่นใจสำหรับแต่ละพารามิเตอร์ GCI รับประกันว่า hypercubeเป็นพื้นที่ความเชื่อมั่นร่วมที่มีความครอบคลุมไม่น้อยกว่า ... ซึ่งค่อนข้างครอบคลุมต่ำ สำหรับในระดับปานกลางn
ดังนั้นจึงไม่ใช่วิธีที่ชาญฉลาดในการค้นหาภูมิภาคที่มีความเชื่อมั่นร่วมกัน: ภูมิภาคที่มีความเชื่อมั่นตามปกติสำหรับ Gaussian หลายตัวแปรเช่นไฮเปอร์เซลล์ลิปลอยด์นั้นไม่ยากที่จะค้นหาว่าเมทริกซ์ความแปรปรวนร่วมเป็นที่รู้จักหรือไม่ อาจเป็นประโยชน์ในการค้นหาภูมิภาคที่มีความมั่นใจเมื่อไม่ทราบเมทริกซ์ความแปรปรวนร่วม? คุณสามารถแสดงตัวอย่างของความเกี่ยวข้องของ GCI ให้กับการคำนวณขอบเขตความเชื่อมั่นร่วมกันได้หรือไม่