ฉันสับสนระหว่างคำสองคำว่า "ฟังก์ชันสร้างความน่าจะเป็น" และ "ฟังก์ชันสร้างช่วงเวลา" ข้อกำหนดเหล่านี้แตกต่างกันอย่างไร
ฉันสับสนระหว่างคำสองคำว่า "ฟังก์ชันสร้างความน่าจะเป็น" และ "ฟังก์ชันสร้างช่วงเวลา" ข้อกำหนดเหล่านี้แตกต่างกันอย่างไร
คำตอบ:
ฟังก์ชั่นการสร้างความน่าจะเป็นมักจะใช้สำหรับตัวแปรสุ่มจำนวนเต็ม (ไม่ใช่ค่าลบ) ที่มีมูลค่า ดังนั้นทั้งสองจึงมีข้อมูลเหมือนกัน
ให้เป็นตัวแปรสุ่มแบบไม่ลบ จากนั้น (ดูhttps://en.wikipedia.org/wiki/Probability-generating_function ) ฟังก์ชันการสร้างความน่าจะเป็นถูกกำหนดเป็น และฟังก์ชั่นช่วงเวลาที่ก่อให้เกิด ตอนนี้กำหนดเพื่อให้ Z จากนั้น ดังนั้นเพื่อสรุปความสัมพันธ์คือ ง่าย: G ( Z ) = อีซีเอ็กซ์เอ็มเอ็กซ์ ( T ) = อีอีทีเอ็กซ์บันทึกZ = ทีอีที = Z G ( Z ) = E Z X = E ( อีที) X = อีอีทีX = M X ( t ) = M X ( log z ) G
EDIT
@Carl เขียนในความคิดเห็นเกี่ยวกับสูตรของฉัน "... ซึ่งเป็นความจริงยกเว้นเมื่อมันเป็นเท็จ" ดังนั้นฉันต้องมีความคิดเห็น แน่นอนความเสมอภาคสันนิษฐานว่าทั้งสองจะมีการกำหนดและโดเมนสำหรับตัวแปรจำเป็นต้องได้รับ ฉันคิดว่าโพสต์นั้นชัดเจนเพียงพอโดยไม่มีพิธีการนั้น แต่ใช่บางครั้งฉันก็ไม่เป็นทางการ แต่มีจุดอื่น: ใช่ฟังก์ชั่นสร้างความน่าจะเป็นส่วนใหญ่จะใช้สำหรับฟังก์ชั่นความน่าจะเป็น (อาร์กิวเมนต์ไม่ลบ) ส่วนใหญ่ที่มาจากชื่อ แต่ไม่มีสิ่งใดในคำจำกัดความซึ่งถือว่าสิ่งนี้มันสามารถใช้กับตัวแปรสุ่มที่ไม่จำเป็นได้! ยกตัวอย่างเช่นใช้การแจกแจงแบบเอ็กซ์โพเนนเชียลด้วยอัตรา 1 เราสามารถคำนวณ Z G ( Z ) = E Z X = ∫ ∞ 0 Z x E - x
ขอให้เรากำหนดทั้งก่อนแล้วระบุความแตกต่าง
1) ในทฤษฎีความน่าจะเป็นและสถิติฟังก์ชั่นสร้างช่วงเวลา (mgf) ของตัวแปรสุ่มที่มีมูลค่าจริงเป็นข้อกำหนดทางเลือกของการแจกแจงความน่าจะเป็น
2) ในทฤษฎีความน่าจะเป็น, ฟังก์ชันการสร้างความน่าจะเป็น (pgf) ของตัวแปรสุ่มแบบไม่ต่อเนื่องคือการแสดงชุดกำลัง (ฟังก์ชันการสร้าง) ของฟังก์ชันความน่าจะเป็นมวลของตัวแปรสุ่ม
mgf ถือได้ว่าเป็นลักษณะทั่วไปของ pgf ความแตกต่างระหว่างสิ่งอื่น ๆ คือฟังก์ชั่นสร้างความน่าจะเป็นนำไปใช้กับตัวแปรสุ่มไม่ต่อเนื่องในขณะที่ฟังก์ชั่นสร้างช่วงเวลานำไปใช้กับตัวแปรสุ่มไม่ต่อเนื่องและบางตัวแปรสุ่มต่อเนื่อง ตัวอย่างเช่นทั้งสองสามารถใช้กับการแจกแจงปัวซงเนื่องจากไม่ต่อเนื่อง แน่นอนพวกเขาให้ผลลัพธ์ในรูปแบบเดียวกัน 1)} เฉพาะ mgf เท่านั้นที่ใช้กับการแจกแจงแบบปกติและไม่ใช้ mgf หรือ pgf กับการแจกแจง Cauchy แต่ด้วยเหตุผลที่แตกต่างกันเล็กน้อย
Edit
เมื่อ @kjetilbhalvorsen ชี้ให้เห็น pgf จะใช้กับตัวแปรที่ไม่เป็นลบแทนที่จะเป็นเพียงตัวแปรสุ่มแยกเท่านั้น ดังนั้นรายการ Wikipedia ปัจจุบันในฟังก์ชั่นสร้างความน่าจะเป็นมีข้อผิดพลาดของการละเว้นและควรปรับปรุง