การวิเคราะห์ข้อมูลเชิงสำรวจ (EDA) มักจะนำไปสู่การสำรวจ "รอยทาง" อื่น ๆ ที่ไม่จำเป็นต้องเป็นของชุดเริ่มต้นของสมมติฐาน ฉันต้องเผชิญกับสถานการณ์เช่นนี้ในกรณีของการศึกษาที่มีขนาดตัวอย่าง จำกัด และข้อมูลจำนวนมากที่รวบรวมผ่านแบบสอบถามที่แตกต่างกัน (ข้อมูลทางสังคม - ประชากรสถิติวิทยาหรือมาตรวิทยาทางการแพทย์ - เช่นการทำงานของจิตใจหรือร่างกายระดับความวิตกกังวล / วิตกกังวล ) มันเกิดขึ้นที่ EDA ช่วยเน้นความสัมพันธ์ที่ไม่คาดคิดบางอย่าง ("ไม่คาดหมาย" ซึ่งหมายความว่าพวกเขาไม่ได้รวมอยู่ในแผนการวิเคราะห์เบื้องต้น) ที่แปลเป็นคำถาม / สมมติฐานเพิ่มเติม
ในกรณีของการ overfitting การขุดลอกข้อมูลหรือการสอดแนมจะนำไปสู่ผลลัพธ์ที่ไม่ได้สรุป อย่างไรก็ตามเมื่อมีข้อมูลจำนวนมากมันค่อนข้างยาก (สำหรับนักวิจัยหรือแพทย์) ในการตั้งสมมติฐานที่ จำกัด
ฉันอยากจะรู้ว่ามีวิธีการที่เป็นที่ยอมรับคำแนะนำหรือกฎง่ายๆที่อาจช่วยอธิบาย EDA ในกรณีศึกษาตัวอย่างขนาดเล็กหรือไม่