ฉันใช้MCMCglmm
แพ็กเกจเมื่อเร็ว ๆ นี้ ฉันสับสนกับสิ่งที่อ้างถึงในเอกสารประกอบว่า R-structure และ G-structure สิ่งเหล่านี้ดูเหมือนจะเกี่ยวข้องกับเอฟเฟกต์แบบสุ่มโดยเฉพาะอย่างยิ่งการระบุพารามิเตอร์สำหรับการแจกแจงก่อนหน้านี้ แต่การอภิปรายในเอกสารประกอบดูเหมือนว่าจะถือว่าผู้อ่านรู้ว่าคำเหล่านี้คืออะไร ตัวอย่างเช่น:
รายการตัวเลือกของข้อกำหนดก่อนหน้านี้มี 3 องค์ประกอบที่เป็นไปได้: R (โครงสร้าง R) G (โครงสร้าง G) และ B (ลักษณะพิเศษคงที่) ............ Priors สำหรับโครงสร้างความแปรปรวน (R และ G ) คือรายการที่มีค่าความแปรปรวน (co) (V) และระดับของพารามิเตอร์ความเชื่อ (nu) สำหรับ inverse-Wishart
แก้ไข: โปรดทราบว่าฉันได้เขียนคำถามที่เหลืออีกครั้งตามความคิดเห็นจากสเตฟาน
ทุกคนสามารถให้แสงสว่างในสิ่งที่โครงสร้าง R และโครงสร้าง G ในบริบทของรูปแบบส่วนประกอบความแปรปรวนแบบง่ายโดยที่ตัวทำนายเชิงเส้นคือ
ฉันทำตัวอย่างต่อไปนี้ด้วยข้อมูลบางอย่างที่มาพร้อมกับ MCMCglmm
> require(MCMCglmm)
> require(lme4)
> data(PlodiaRB)
> prior1 = list(R = list(V = 1, fix=1), G = list(G1 = list(V = 1, nu = 0.002)))
> m1 <- MCMCglmm(Pupated ~1, random = ~FSfamily, family = "categorical",
+ data = PlodiaRB, prior = prior1, verbose = FALSE)
> summary(m1)
G-structure: ~FSfamily
post.mean l-95% CI u-95% CI eff.samp
FSfamily 0.8529 0.2951 1.455 160
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 1 1 1 0
Location effects: Pupated ~ 1
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -1.1630 -1.4558 -0.8119 463.1 <0.001 ***
---
> prior2 = list(R = list(V = 1, nu = 0), G = list(G1 = list(V = 1, nu = 0.002)))
> m2 <- MCMCglmm(Pupated ~1, random = ~FSfamily, family = "categorical",
+ data = PlodiaRB, prior = prior2, verbose = FALSE)
> summary(m2)
G-structure: ~FSfamily
post.mean l-95% CI u-95% CI eff.samp
FSfamily 0.8325 0.3101 1.438 79.25
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 0.7212 0.04808 2.427 3.125
Location effects: Pupated ~ 1
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -1.1042 -1.5191 -0.7078 20.99 <0.001 ***
---
> m2 <- glmer(Pupated ~ 1+ (1|FSfamily), family="binomial",data=PlodiaRB)
> summary(m2)
Generalized linear mixed model fit by the Laplace approximation
Formula: Pupated ~ 1 + (1 | FSfamily)
Data: PlodiaRB
AIC BIC logLik deviance
1020 1029 -508 1016
Random effects:
Groups Name Variance Std.Dev.
FSfamily (Intercept) 0.56023 0.74849
Number of obs: 874, groups: FSfamily, 49
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.9861 0.1344 -7.336 2.2e-13 ***
ดังนั้นขึ้นอยู่กับความคิดเห็นจากสเตฟานผมคิดว่าโครงสร้าง G สำหรับยู แต่ความเห็นยังบอกว่าโครงสร้าง R คือสำหรับσ 2 0 Eๆ นี้ดูเหมือนจะไม่ปรากฏในการส่งออกlme4
โปรดทราบว่าผลที่ได้จากlme4/glmer()
มีความสอดคล้องกับตัวอย่างทั้งจาก MCMCglmm
MCMC
ดังนั้นเป็นโครงสร้าง R สำหรับและทำไมไม่ได้นี้จะปรากฏในการส่งออกสำหรับ?lme4/glmer()
lme4