ฉันกำลังพยายามสลายเมทริกซ์ความแปรปรวนร่วมโดยยึดตามชุดข้อมูลที่กระจัดกระจาย / มีความสุข ฉันสังเกตเห็นว่าผลรวมของแลมบ์ดา (อธิบายความแปรปรวน) ตามที่คำนวณด้วยsvd
กำลังถูกขยายด้วยข้อมูลที่มีความสุขมากขึ้น โดยไม่มีช่องว่างsvd
และeigen
ผลลัพธ์ที่เหมือนกัน
ดูเหมือนจะไม่เกิดขึ้นกับการeigen
สลายตัว ฉันโน้มตัวไปใช้svd
เพราะค่าแลมบ์ดาเป็นบวกอยู่เสมอ แต่แนวโน้มนี้น่าเป็นห่วง มีการแก้ไขบางอย่างที่ต้องนำไปใช้หรือฉันควรหลีกเลี่ยงsvd
ปัญหาดังกล่าวทั้งหมด
###Make complete and gappy data set
set.seed(1)
x <- 1:100
y <- 1:100
grd <- expand.grid(x=x, y=y)
#complete data
z <- matrix(runif(dim(grd)[1]), length(x), length(y))
image(x,y,z, col=rainbow(100))
#gappy data
zg <- replace(z, sample(seq(z), length(z)*0.5), NaN)
image(x,y,zg, col=rainbow(100))
###Covariance matrix decomposition
#complete data
C <- cov(z, use="pair")
E <- eigen(C)
S <- svd(C)
sum(E$values)
sum(S$d)
sum(diag(C))
#gappy data (50%)
Cg <- cov(zg, use="pair")
Eg <- eigen(Cg)
Sg <- svd(Cg)
sum(Eg$values)
sum(Sg$d)
sum(diag(Cg))
###Illustration of amplification of Lambda
set.seed(1)
frac <- seq(0,0.5,0.1)
E.lambda <- list()
S.lambda <- list()
for(i in seq(frac)){
zi <- z
NA.pos <- sample(seq(z), length(z)*frac[i])
if(length(NA.pos) > 0){
zi <- replace(z, NA.pos, NaN)
}
Ci <- cov(zi, use="pair")
E.lambda[[i]] <- eigen(Ci)$values
S.lambda[[i]] <- svd(Ci)$d
}
x11(width=10, height=5)
par(mfcol=c(1,2))
YLIM <- range(c(sapply(E.lambda, range), sapply(S.lambda, range)))
#eigen
for(i in seq(E.lambda)){
if(i == 1) plot(E.lambda[[i]], t="n", ylim=YLIM, ylab="lambda", xlab="", main="Eigen Decomposition")
lines(E.lambda[[i]], col=i, lty=1)
}
abline(h=0, col=8, lty=2)
legend("topright", legend=frac, lty=1, col=1:length(frac), title="fraction gaps")
#svd
for(i in seq(S.lambda)){
if(i == 1) plot(S.lambda[[i]], t="n", ylim=YLIM, ylab="lambda", xlab="", main="Singular Value Decomposition")
lines(S.lambda[[i]], col=i, lty=1)
}
abline(h=0, col=8, lty=2)
legend("topright", legend=frac, lty=1, col=1:length(frac), title="fraction gaps")
svd
ถ้ามันไม่ได้สำหรับค่าลักษณะเฉพาะที่แตกต่างกัน ผลที่ได้คือให้ความสำคัญกับค่าลักษณะเฉพาะต่อท้ายมากกว่าที่ควร