ข้อความที่ตัดตอนมาต่อไปนี้มาจากการเข้า, อะไรคือความแตกต่างระหว่างการทดสอบแบบด้านเดียวและแบบสองด้าน? บนเว็บไซต์ช่วยเหลือสถิติของ UCLA
... พิจารณาถึงผลที่จะตามมาจากการขาดหายไปในทิศทางอื่น ลองนึกภาพคุณได้พัฒนายาใหม่ที่คุณเชื่อว่าเป็นการพัฒนายาที่มีอยู่เดิม คุณต้องการเพิ่มความสามารถในการตรวจจับการปรับปรุงให้สูงสุดเพื่อที่คุณจะได้เลือกการทดสอบแบบด้านเดียว ในการทำเช่นนี้คุณไม่สามารถทดสอบความเป็นไปได้ที่ยาใหม่จะมีประสิทธิภาพน้อยกว่ายาที่มีอยู่เดิม
หลังจากเรียนรู้พื้นฐานที่แน่นอนของการทดสอบสมมติฐานและไปที่ส่วนเกี่ยวกับการทดสอบแบบเทลด์ vs การทดสอบสองแบบ ... ฉันเข้าใจคณิตศาสตร์พื้นฐานและความสามารถในการตรวจจับที่เพิ่มขึ้นของการทดสอบแบบเทลด์หนึ่งการทดสอบ ฯลฯ ... แต่ฉันไม่สามารถพันรอบศีรษะ รอบ ๆ สิ่งหนึ่ง ... ประเด็นคืออะไร? ฉันล้มเหลวที่จะเข้าใจว่าทำไมคุณควรแยกอัลฟ่าของคุณระหว่างสุดขั้วทั้งสองเมื่อผลลัพธ์ตัวอย่างของคุณสามารถเป็นหนึ่งหรืออย่างอื่นหรือทั้งสองอย่าง
ใช้สถานการณ์ตัวอย่างจากข้อความที่ยกมาด้านบน คุณอาจจะ "ล้มเหลวในการทดสอบ" สำหรับผลลัพธ์ในทิศทางตรงกันข้ามได้อย่างไร? คุณมีค่าเฉลี่ยตัวอย่าง คุณมีค่าเฉลี่ยประชากรของคุณ เลขคณิตอย่างง่ายจะบอกให้คุณทราบว่าอะไรสูงกว่า มีการทดสอบอะไรหรือล้มเหลวในการทดสอบในทิศทางตรงกันข้าม สิ่งที่หยุดคุณเพิ่งเริ่มต้นจากศูนย์ด้วยสมมติฐานตรงกันข้ามถ้าคุณเห็นชัดเจนว่าค่าเฉลี่ยตัวอย่างจะไปในทิศทางอื่น?
อ้างจากหน้าเดียวกันอีก:
การเลือกการทดสอบแบบหนึ่งด้านหลังจากรันการทดสอบแบบสองด้านที่ล้มเหลวในการปฏิเสธสมมติฐานว่างไม่เหมาะสมไม่ว่า "ปิด" ถึงการทดสอบแบบสองด้านนั้นมีนัยสำคัญก็ตาม
ฉันคิดว่าสิ่งนี้ยังใช้กับการสลับขั้วของการทดสอบแบบด้านเดียว แต่วิธีนี้ "หมอ" ส่งผลให้ถูกต้องน้อยกว่าถ้าคุณเพียงแค่เลือกการทดสอบหนึ่งด้านที่ถูกต้องในตอนแรก?
เห็นได้ชัดว่าฉันพลาดภาพส่วนใหญ่ที่นี่ ทุกอย่างดูเหมือนจะไม่เจาะจงเกินไป ซึ่งก็คือฉันคิดว่าในแง่ที่สิ่งที่หมายถึง "นัยสำคัญทางสถิติ" - 95%, 99%, 99.9% ... โดยพลการเริ่มต้นด้วย