ถ้าฉันมีตัวแปรสุ่มที่ปัวซองกระจายกับพารามิเตอร์ , การกระจายตัวของ(เช่นชั้นจำนวนเต็มของค่าเฉลี่ย)?
ผลรวมของ Poissons ก็เป็น Poisson เช่นกัน แต่ฉันไม่มั่นใจในสถิติเพียงพอที่จะตัดสินว่ามันเหมือนกันสำหรับกรณีข้างต้นหรือไม่
ถ้าฉันมีตัวแปรสุ่มที่ปัวซองกระจายกับพารามิเตอร์ , การกระจายตัวของ(เช่นชั้นจำนวนเต็มของค่าเฉลี่ย)?
ผลรวมของ Poissons ก็เป็น Poisson เช่นกัน แต่ฉันไม่มั่นใจในสถิติเพียงพอที่จะตัดสินว่ามันเหมือนกันสำหรับกรณีข้างต้นหรือไม่
คำตอบ:
การวางคำถามทั่วไปเพื่อถามถึงการแจกแจงของเมื่อรู้ว่าการแจกแจงของเป็นไปตามธรรมชาติ (ในคำถามมีการแจกแจงปัวซองของพารามิเตอร์และ .)
การกระจายตัวของจะถูกกำหนดได้อย่างง่ายดายโดยการกระจายของมYซึ่งน่าจะสร้างฟังก์ชั่น (PGF) สามารถพิจารณาในแง่ของ PGF ของX นี่คือโครงร่างของความเป็นมา
เขียนสำหรับ PGF ของXที่ (ตามคำนิยาม) P n = Pr ( X = n ) m Yถูกสร้างขึ้นจากXในลักษณะที่ pgf, q , คือ
เพราะสิ่งนี้มาบรรจบกันอย่างแน่นอนสำหรับเราสามารถจัดเรียงคำศัพท์ใหม่เป็นผลรวมของชิ้นส่วนของแบบฟอร์ม
for . The power series of the functions consist of every term of the series of starting with the : this is sometimes called a decimation of . Google searches presently don't turn up much useful information on decimations, so for completeness, here's a derivation of a formula.
Let be any primitive root of unity; for instance, take . Then it follows from and that
To see this, note that the operator is linear, so it suffices to check the formula on the basis . Applying the right hand side to gives
When and differ by a multiple of , each term in the sum equals and we obtain . Otherwise, the terms cycle through powers of and these sum to zero. Whence this operator preserves all powers of congruent to modulo and kills all the others: it is precisely the desired projection.
A formula for follows readily by changing the order of summation and recognizing one of the sums as geometric, thereby writing it in closed form:
For example, the pgf of a Poisson distribution of parameter is . With , and the pgf of will be
One use of this approach is to compute moments of and . The value of the derivative of the pgf evaluated at is the factorial moment. The moment is a linear combination of the first factorial moments. Using these observations we find, for instance, that for a Poisson distributed , its mean (which is the first factorial moment) equals , the mean of equals :
The means for are shown in blue, red, and yellow, respectively, as functions of : asymptotically, the mean drops by compared to the original Poisson mean.
Similar formulas for the variances can be obtained. (They get messy as rises and so are omitted. One thing they definitively establish is that when no multiple of is Poisson: it does not have the characteristic equality of mean and variance) Here is a plot of the variances as a function of for :
It is interesting that for larger values of the variances increase. Intuitively, this is due to two competing phenomena: the floor function is effectively binning groups of values that originally were distinct; this must cause the variance to decrease. At the same time, as we have seen, the means are changing, too (because each bin is represented by its smallest value); this must cause a term equal to the square of the difference of means to be added back. The increase in variance for large becomes larger with larger values of .
The behavior of the variance of with is surprisingly complex. Let's end with a quick simulation (in R
) showing what it can do. The plots show the difference between the variance of and the variance of for Poisson distributed with various values of ranging from through . In all cases the plots appear to have reached their asymptotic values at the right.
set.seed(17)
par(mfrow=c(3,4))
temp <- sapply(c(1,2,5,10,20,50,100,200,500,1000,2000,5000), function(lambda) {
x <- rpois(20000, lambda)
v <- sapply(1:floor(lambda + 4*sqrt(lambda)),
function(m) var(floor(x/m)*m) - var(x))
plot(v, type="l", xlab="", ylab="Increased variance",
main=toString(lambda), cex.main=.85, col="Blue", lwd=2)
})
sapply()
for simulation. Thanks.
As Michael Chernick says, if the individual random variables are independent then the the sum is Poisson with parameter (mean and variance) which you might call .
Dividing by reduces the mean to and variance so the variance will be less than the equivalent Poisson distribution. As Michael says, not all values will be integers.
Using the floor function reduces the mean slightly, by about , and affects the variance slightly too though in a more complicated manner. Although you have integer values, the variance will still be substantially less than the mean and so you will have a narrower distribution than the Poisson.
The probability mass function of the average of independent Poisson random variables can be written down explicitly, though the answer might not help you very much. As Michael Chernick noted in comments on his own answer, the sum of independent Poisson random variables with respective parameters is a Poisson random variable with parameter . Hence,
Y will not be Poisson. Note that Poisson random variables take on non negative integer values. Once you divide by a constant you create a random variable that can have non-integer values. It will still have the shape of the Poisson. It is just that the discrete probabilities may occur at non-integer points.