ฉันต้องการสร้างแบบจำลองการถดถอยซึ่งเป็นค่าเฉลี่ยของแบบจำลอง OLS หลายตัวโดยแต่ละแบบจะอิงตามส่วนย่อยของข้อมูลทั้งหมด แนวคิดเบื้องหลังนี้อ้างอิงจากบทความนี้ ฉันสร้าง k เท่าและสร้างแบบจำลอง k OLS แต่ละอันบนข้อมูลโดยไม่มีการพับหนึ่งครั้ง ฉันเฉลี่ยค่าสัมประสิทธิ์การถดถอยเพื่อให้ได้แบบจำลองขั้นสุดท้าย
สิ่งนี้ทำให้ฉันรู้สึกคล้ายกับบางอย่างเช่นการถดถอยของป่าแบบสุ่มซึ่งต้นไม้การถดถอยจำนวนมากถูกสร้างและเฉลี่ย อย่างไรก็ตามประสิทธิภาพของแบบจำลอง OLS โดยเฉลี่ยดูเหมือนจะแย่กว่าการสร้างแบบจำลอง OLS เพียงตัวเดียวบนข้อมูลทั้งหมด คำถามของฉันคือ: มีเหตุผลทางทฤษฎีว่าทำไมค่าเฉลี่ยหลายรุ่น OLS ผิดหรือไม่พึงประสงค์? เราคาดหวังว่าค่าเฉลี่ยของ OLS หลายรุ่นเพื่อลดการ overfitting หรือไม่ ด้านล่างเป็นตัวอย่าง R
#Load and prepare data
library(MASS)
data(Boston)
trn <- Boston[1:400,]
tst <- Boston[401:nrow(Boston),]
#Create function to build k averaging OLS model
lmave <- function(formula, data, k, ...){
lmall <- lm(formula, data, ...)
folds <- cut(seq(1, nrow(data)), breaks=k, labels=FALSE)
for(i in 1:k){
tstIdx <- which(folds==i, arr.ind = TRUE)
tst <- data[tstIdx, ]
trn <- data[-tstIdx, ]
assign(paste0('lm', i), lm(formula, data = trn, ...))
}
coefs <- data.frame(lm1=numeric(length(lm1$coefficients)))
for(i in 1:k){
coefs[, paste0('lm', i)] <- get(paste0('lm', i))$coefficients
}
lmnames <- names(lmall$coefficients)
lmall$coefficients <- rowMeans(coefs)
names(lmall$coefficients) <- lmnames
lmall$fitted.values <- predict(lmall, data)
target <- trimws(gsub('~.*$', '', formula))
lmall$residuals <- data[, target] - lmall$fitted.values
return(lmall)
}
#Build OLS model on all trn data
olsfit <- lm(medv ~ ., data=trn)
#Build model averaging five OLS
olsavefit <- lmave('medv ~ .', data=trn, k=5)
#Build random forest model
library(randomForest)
set.seed(10)
rffit <- randomForest(medv ~ ., data=trn)
#Get RMSE of predicted fits on tst
library(Metrics)
rmse(tst$medv, predict(olsfit, tst))
[1] 6.155792
rmse(tst$medv, predict(olsavefit, tst))
[1] 7.661 ##Performs worse than olsfit and rffit
rmse(tst$medv, predict(rffit, tst))
[1] 4.259403