ฉันมีฟังก์ชั่นความน่าจะเป็นสำหรับความน่าจะเป็นของข้อมูลของฉันรับพารามิเตอร์บางรุ่นซึ่งผมอยากจะประมาณการ สมมติว่ามีค่าคงที่ของพารามิเตอร์ระดับความน่าจะเป็นเป็นสัดส่วนกับความน่าจะเป็นหลัง ฉันใช้วิธี MCMC เพื่อสุ่มตัวอย่างความน่าจะเป็นนี้
เมื่อดูที่ลูกโซ่ที่เกิดขึ้นฉันพบว่าพารามิเตอร์ความน่าจะเป็นสูงสุดนั้นไม่สอดคล้องกับการแจกแจงแบบหลัง ตัวอย่างเช่นการกระจายความน่าจะเป็นด้านหลังของชายขอบสำหรับหนึ่งในพารามิเตอร์อาจเป็นในขณะที่ค่าของที่จุดน่าจะเป็นสูงสุดคือโดยพื้นฐานแล้ว เกือบจะเป็นค่าสูงสุดของผ่านการสุ่มตัวอย่างโดย MCMC
นี่เป็นตัวอย่างที่แสดงไม่ใช่ผลลัพธ์ที่แท้จริงของฉัน การแจกแจงจริงนั้นซับซ้อนกว่า แต่พารามิเตอร์ ML บางตัวมีค่า p ที่ไม่น่าเหมือนกันในการแจกแจงหลัง ทราบว่าบางส่วนของพารามิเตอร์ของฉันจะกระโดด (เช่น ); ภายในขอบเขตนักบวชจะเหมือนกันเสมอ
คำถามของฉันคือ:
การเบี่ยงเบนนั้นเป็นปัญหาต่อหรือเปล่า เห็นได้ชัดว่าฉันไม่ได้คาดหวังว่าพารามิเตอร์ ML จะเหมือนกันซึ่งสูงสุดของการกระจายหลังส่วนล่างของพวกเขาแต่ละคน แต่สังหรณ์ใจมันรู้สึกว่าพวกเขาไม่ควรพบลึกลงไปในหาง การเบี่ยงเบนนี้ทำให้ผลลัพธ์ของฉันเป็นโมฆะโดยอัตโนมัติหรือไม่
ไม่ว่าจะเป็นปัญหาหรือไม่มันเป็นอาการของโรคที่เฉพาะเจาะจงในบางช่วงของการวิเคราะห์ข้อมูลหรือไม่? ตัวอย่างเช่นเป็นไปได้หรือไม่ที่จะสร้างคำแถลงทั่วไปเกี่ยวกับว่าการเบี่ยงเบนดังกล่าวอาจเกิดจากการรวมกันของโซ่ที่ไม่ถูกต้องแบบจำลองที่ไม่ถูกต้องหรือขอบเขตที่แน่นเกินไปของพารามิเตอร์