ฉันทำการประเมินทางคอมพิวเตอร์โดยใช้วิธีการที่แตกต่างกันของการปรับแบบจำลองที่ใช้ในวิทยาศาสตร์ Palaeo ฉันมีชุดฝึกอบรมแบบ ish ขนาดใหญ่ดังนั้นฉันจึงสุ่ม (ชุดชั้นในแบบสุ่มแบ่งชั้น) แล้ววางชุดทดสอบ ผมติดตั้งวิธีการแตกต่างกันไปตัวอย่างการฝึกอบรมชุดและการใช้ม.ส่งผลให้รูปแบบที่ผมคาดการตอบสนองสำหรับตัวอย่างการทดสอบชุดและคำนวณ RMSEP มากกว่ากลุ่มตัวอย่างที่อยู่ในชุดทดสอบ นี้เป็นหนึ่งในการทำงาน
ฉันทำกระบวนการนี้ซ้ำหลายครั้งทุกครั้งที่ฉันเลือกชุดฝึกอบรมที่แตกต่างกันโดยการสุ่มตัวอย่างชุดทดสอบใหม่
หลังจากทำสิ่งนี้แล้วฉันต้องการตรวจสอบว่าวิธีใดวิธีมีประสิทธิภาพ RMSEP ที่ดีขึ้นหรือแย่ลง ฉันต้องการเปรียบเทียบวิธีการจับคู่แบบฉลาด ๆ
วิธีการของฉันได้รับเพื่อให้พอดีกับผลกระทบที่ผสม (LME) รูปแบบเชิงเส้นที่มีผลกระทบสุ่มเดียวสำหรับการเรียกใช้ ฉันใช้lmer()
จากแพ็คเกจlme4เพื่อให้พอดีกับรุ่นและฟังก์ชั่นของฉันจากแพ็คเกจmultcompเพื่อทำการเปรียบเทียบหลายอย่าง แบบจำลองของฉันเป็นหลัก
lmer(RMSEP ~ method + (1 | Run), data = FOO)
ที่method
บ่งชี้วิธีการที่ถูกนำมาใช้ในการสร้างแบบจำลองพยากรณ์สำหรับชุดทดสอบและRun
เป็นตัวบ่งชี้สำหรับแต่ละโดยเฉพาะอย่างยิ่งการเรียกของ "ทดลอง" ของฉัน
คำถามของฉันเกี่ยวกับส่วนที่เหลือของ LME ให้ผลแบบสุ่มเดียวสำหรับRunฉันสมมติว่าค่า RMSEP สำหรับการทำงานนั้นมีความสัมพันธ์กับระดับหนึ่ง แต่ไม่เกี่ยวข้องระหว่างการวิ่งบนพื้นฐานของความสัมพันธ์ที่ชักนำให้เกิดผลแบบสุ่ม
ข้อสันนิษฐานเกี่ยวกับความเป็นอิสระระหว่างการรันนี้มีผลหรือไม่? หากไม่มีวิธีที่จะอธิบายสิ่งนี้ในโมเดล LME หรือฉันควรมองหาการวิเคราะห์ทางสถิติประเภทอื่นเพื่อตอบคำถามของฉัน?