ฉันต้องการเปรียบเทียบตัวแยกประเภทที่แตกต่างกัน 2 ตัวสำหรับปัญหาการจำแนกข้อความแบบหลายคลาสที่ใช้ชุดข้อมูลการฝึกอบรมขนาดใหญ่ ฉันสงสัยว่าฉันควรใช้ ROC curves หรือ learning curves เพื่อเปรียบเทียบ 2 ตัวแยกประเภท
ในอีกด้านหนึ่งเส้นโค้งการเรียนรู้มีประโยชน์สำหรับการตัดสินใจขนาดของชุดข้อมูลการฝึกอบรมเนื่องจากคุณสามารถหาขนาดของชุดข้อมูลที่ตัวแยกประเภทหยุดการเรียนรู้ (และอาจลดระดับ) ดังนั้นตัวจําแนกที่ดีที่สุดในกรณีนี้อาจเป็นตัวจําแนกที่มีความแม่นยำสูงสุดด้วยขนาดชุดข้อมูลที่เล็กที่สุด
ในทางกลับกัน ROC curves ช่วยให้คุณค้นหาจุดที่มีการแลกเปลี่ยนที่เหมาะสมระหว่างความไว / ความจำเพาะ ลักษณนามที่ดีที่สุดในกรณีนี้คือตัวที่ใกล้กับส่วนบนซ้ายมากที่สุดโดยมี TPR สูงสุดสำหรับ FPR ใด ๆ
ฉันควรใช้วิธีการประเมินทั้งสองหรือไม่ เป็นไปได้หรือไม่ที่วิธีที่มีช่วงการเรียนรู้ที่ดีกว่ามีเส้นโค้ง ROC ที่แย่ลงและในทางกลับกัน