เราทุกคนคุ้นเคยกับการศึกษาเชิงสังเกตการณ์ที่พยายามสร้างการเชื่อมโยงเชิงสาเหตุระหว่างตัวทำนาย X แบบไม่มีการสุ่มกับผลลัพธ์โดยรวมถึงผู้ที่อาจเกิดขึ้นได้ทั้งหมดในรูปแบบการถดถอยหลายแบบ ด้วยเหตุนี้“ การควบคุมเพื่อ” ผู้รบกวนทุกคนการโต้แย้งจึงทำให้เราแยกผลของตัวทำนายผลประโยชน์
ฉันกำลังพัฒนาความรู้สึกไม่สบายที่เพิ่มขึ้นด้วยความคิดนี้โดยส่วนใหญ่อ้างอิงจากคำพูดที่ไม่ได้ทำโดยอาจารย์ของชั้นเรียนสถิติของฉัน พวกเขาตกอยู่ในประเภทหลักสองสาม:
1. คุณสามารถควบคุมค่าความแปรปรวนร่วมที่คุณคิดและวัดได้เท่านั้น
นี่เป็นสิ่งที่ชัดเจน แต่ฉันสงสัยว่าจริงๆแล้วมันอันตรายที่สุดและไม่สามารถเอาชนะได้ทั้งหมด
2. วิธีการได้นำไปสู่ข้อผิดพลาดที่น่าเกลียดในอดีต
ยกตัวอย่างเช่นPetitti & Freedman (2005)อภิปรายว่าการศึกษาเชิงสังเกตการณ์ที่ปรับค่าทางสถิติมานานหลายทศวรรษได้ผลสรุปที่ไม่ถูกต้องเกี่ยวกับผลของการบำบัดทดแทนฮอร์โมนต่อความเสี่ยงของโรคหัวใจ ภายหลัง RCTs พบผลกระทบที่ตรงกันข้ามเกือบ
3. ความสัมพันธ์ของตัวทำนายผลสามารถทำงานได้อย่างแปลกประหลาดเมื่อคุณควบคุมผู้ร่วมทุน
Yu-Kang Tu, Gunnell, & Gilthorpe (2008) หารือเกี่ยวกับอาการที่แตกต่างกันบางอย่างรวมถึงความขัดแย้งของลอร์ด, ความขัดแย้งของซิมป์สันและตัวแปรต้าน
4. เป็นการยากสำหรับแบบจำลองเดียว (การถดถอยแบบหลายจุด) เพื่อปรับให้เพียงพอสำหรับ covariates และแบบจำลองความสัมพันธ์ของผลลัพธ์ของตัวทำนายพร้อมกัน
ฉันเคยได้ยินเรื่องนี้เป็นเหตุผลสำหรับความเหนือกว่าของวิธีการเช่นคะแนนความชอบและการแบ่งชั้นของผู้สับสน แต่ฉันไม่แน่ใจว่าฉันเข้าใจจริงๆ
5. แบบจำลองของ ANCOVA กำหนดให้ค่าความแปรปรวนร่วมและตัวทำนายความสนใจเป็นอิสระ
แน่นอนว่าเราปรับสำหรับคนสับสนเพราะแม่นยำเพราะสัมพันธ์กับตัวทำนายความสนใจดังนั้นดูเหมือนว่าแบบจำลองจะไม่ประสบความสำเร็จในกรณีที่แน่นอนเมื่อเราต้องการมันมากที่สุด อาร์กิวเมนต์ไปที่การปรับที่เหมาะสมสำหรับการลดเสียงรบกวนในการทดลองแบบสุ่มเท่านั้น Miller & Chapman, 2001ให้รีวิวที่ยอดเยี่ยม
ดังนั้นคำถามของฉันคือ:
- ปัญหาเหล่านี้ร้ายแรงเพียงใดและอย่างอื่นที่ฉันอาจไม่รู้
- ฉันจะกลัวแค่ไหนเมื่อฉันเห็นการศึกษาที่ว่า "ควบคุมทุกสิ่ง"
(ฉันหวังว่าคำถามนี้จะไม่ไกลเกินกว่าขอบเขตการอภิปรายและเชิญคำแนะนำสำหรับการปรับปรุงได้อย่างมีความสุข)
แก้ไข : ฉันเพิ่มจุด 5 หลังจากค้นหาการอ้างอิงใหม่