ฉันคิดว่าสมมติฐานพื้นฐานหนึ่งของการเรียนรู้ของเครื่องหรือการประมาณค่าพารามิเตอร์คือข้อมูลที่มองไม่เห็นมาจากการแจกแจงแบบเดียวกับชุดการฝึกอบรม อย่างไรก็ตามในบางกรณีการกระจายชุดทดสอบเกือบจะแตกต่างจากชุดฝึกอบรม
พูดสำหรับปัญหาการจัดหมวดหมู่หลากหลายขนาดใหญ่ที่พยายามแบ่งคำอธิบายผลิตภัณฑ์ออกเป็นประมาณ 17,000 คลาส ชุดการฝึกอบรมจะมีนักบวชชั้นสูงอย่างมากบางชั้นอาจมีตัวอย่างการฝึกอบรมมากมาย แต่บางคนอาจมีเพียงไม่กี่คน สมมติว่าเราได้รับชุดทดสอบที่มีเลเบลคลาสที่ไม่รู้จักจากลูกค้า เราพยายามจัดประเภทผลิตภัณฑ์แต่ละชิ้นในชุดทดสอบเป็นหนึ่งใน 17,000 คลาสโดยใช้ตัวจําแนกที่ฝึกในชุดฝึกอบรม ชุดทดสอบอาจมีการแจกแจงแบบเบ้ แต่อาจแตกต่างจากชุดการฝึกอบรมเนื่องจากอาจเกี่ยวข้องกับธุรกิจที่แตกต่างกัน หากการแจกแจงสองระดับแตกต่างกันมากลักษณนามที่ผ่านการฝึกอบรมอาจทำงานได้ไม่ดีในชุดทดสอบ เรื่องนี้ดูเหมือนชัดเจนโดยเฉพาะกับตัวจําแนก Naive Bayes
มีวิธีใดที่สามารถจัดการความแตกต่างระหว่างชุดการฝึกอบรมและชุดทดสอบที่กำหนดสำหรับตัวแยกประเภทความน่าจะเป็นหรือไม่ ฉันได้ยินเกี่ยวกับการที่ "transductive SVM" ทำสิ่งที่คล้ายกันใน SVM มีเทคนิคที่คล้ายกันในการเรียนรู้ลักษณนามที่มีประสิทธิภาพดีที่สุดในชุดการทดสอบที่กำหนดหรือไม่? จากนั้นเราสามารถฝึกตัวจําแนกใหม่สําหรับชุดการทดสอบที่แตกต่างกันตามที่ได้รับอนุญาตในสถานการณ์จริงนี้