ฉันค้นคว้าเกี่ยวกับ k-mean และสิ่งเหล่านี้คือสิ่งที่ฉันได้รับ: k-mean เป็นหนึ่งในอัลกอริธึมที่ง่ายที่สุดที่ใช้วิธีการเรียนรู้แบบไม่ดูแลเพื่อแก้ปัญหาการจัดกลุ่มที่รู้จัก มันทำงานได้ดีกับชุดข้อมูลขนาดใหญ่
อย่างไรก็ตาม K-Means มีข้อเสียคือ:
- ความไวสูงต่อค่าผิดปกติและเสียงรบกวน
- ใช้งานไม่ได้กับรูปร่างของคลัสเตอร์ที่ไม่เป็นวงกลม - ต้องระบุจำนวนของคลัสเตอร์และค่าเริ่มต้นของเมล็ดก่อน
- ความสามารถต่ำในการส่งผ่านที่เหมาะสมที่สุดในท้องถิ่น
มีอะไรที่ยอดเยี่ยมเกี่ยวกับ k-mean หรือไม่เพราะดูเหมือนว่าข้อเสียเปรียบอยู่เหนือสิ่งที่ดีเกี่ยวกับ k-mean
โปรดสอนฉัน