ใครสามารถช่วยอธิบายแนวคิดเกี่ยวกับวิธีการคาดการณ์สำหรับข้อมูลใหม่เมื่อใช้แบบเรียบ / เส้นโค้งสำหรับแบบจำลองการทำนายได้หรือไม่ ตัวอย่างเช่นเมื่อสร้างแบบจำลองที่ใช้gamboost
ในmboost
แพ็คเกจใน R ด้วย p-splines การคาดการณ์สำหรับข้อมูลใหม่ทำอย่างไร ข้อมูลอะไรที่ใช้ในการฝึกอบรม?
สมมติว่ามีค่าใหม่ของตัวแปรอิสระ x และเราต้องการทำนาย y สูตรสำหรับการสร้างอิสระถูกนำไปใช้กับค่าข้อมูลใหม่นี้โดยใช้ knots หรือ df ที่ใช้เมื่อทำการฝึกอบรมรูปแบบแล้วค่าสัมประสิทธิ์จากแบบจำลองที่ผ่านการฝึกอบรมจะถูกนำไปใช้ในการทำนายผลลัพธ์หรือไม่?
นี่คือตัวอย่างของ R สิ่งที่คาดการณ์ว่าจะทำให้เกิดแนวคิดในการแสดงผล 899.4139 สำหรับข้อมูลใหม่ mean_radius = 15.99
#take the data wpbc as example
library(mboost)
data(wpbc)
modNew<-gamboost(mean_area~mean_radius, data = wpbc, baselearner = "bbs", dfbase = 4, family=Gaussian(),control = boost_control(mstop = 5))
test<-data.frame(mean_radius=15.99)
predict(modNew,test)