รูปแบบปิดไม่มีอยู่สำหรับ T แต่วิธีการที่ใช้งานง่ายและมีความเสถียรนั้นผ่านทางอัลกอริธึม EM ตอนนี้เพราะนักเรียนเป็นส่วนผสมของบรรทัดฐานคุณสามารถเขียนแบบจำลองของคุณเป็น
yi=μ+ei
where ei|σ,wi∼N(0,σ2w−1i) and wi∼Ga(ν2,ν2). This means that conditionally on wi the mle are just the weighted mean and standard deviation. This is the "M"step
μ^=∑iwiyi∑iwi
σ^2=∑iwi(yi−μ^)2n
Now the "E" step replaces wi with its expectation given all the data. This is given as:
w^i=(ν+1)σ2νσ2+(yi−μ)2
so you simply iterate the above two steps, replacing the "right hand side" of each equation with the current parameter estimates.
This very easily shows the robustness properties of the t distribution as observations with large residuals receive less weight in the calculation for the location μ, and bounded influence in the calculation of σ2. By "bounded influence" I mean that the contribution to the estimate for σ2 from the ith observation cannot exceed a given threshold (this is (ν+1)σ2old in the EM algorithm). Also ν is a "robustness"parameter in that increasing (decreasing) ν will result in more (less) uniform weights and hence more (less) sensitivity to outliers.
One thing to note is that the log likelihood function may have more than one stationary point, so the EM algorithm may converge to a local mode instead of a global mode. The local modes are likely to be found when the location parameter is started too close to an outlier. So starting at the median is a good way to avoid this.