ฉันใช้แพ็กเกจ R ที่ถูกลงโทษเพื่อให้ได้ค่าสัมประสิทธิ์การหดตัวสำหรับชุดข้อมูลที่ฉันมีตัวทำนายจำนวนมากและมีความรู้เพียงเล็กน้อยซึ่งเป็นสิ่งที่สำคัญ หลังจากที่ฉันเลือกพารามิเตอร์การปรับแต่ง L1 และ L2 และฉันพอใจกับค่าสัมประสิทธิ์ของฉันจะมีวิธีทางสถิติที่จะสรุปรูปแบบที่เหมาะสมกับ R-squared หรือไม่?
นอกจากนี้ฉันสนใจที่จะทดสอบความสำคัญโดยรวมของโมเดล (เช่นR² = 0 หรือทำทั้งหมด = 0)
ฉันได้อ่านคำตอบของคำถามที่คล้ายกันแล้วที่นี่แต่ก็ไม่ได้ตอบคำถามของฉัน มีการสอนที่ยอดเยี่ยมเกี่ยวกับแพ็คเกจ R ที่ฉันใช้ที่นี่และผู้เขียน Jelle Goeman มีหมายเหตุต่อไปนี้ในตอนท้ายของบทช่วยสอนเกี่ยวกับช่วงความมั่นใจจากโมเดลการถดถอยที่ถูกลงโทษ:
มันเป็นคำถามที่ธรรมดามากที่จะถามถึงข้อผิดพลาดมาตรฐานของสัมประสิทธิ์การถดถอยหรือปริมาณที่ประมาณไว้อื่น ๆ ในหลักการข้อผิดพลาดมาตรฐานดังกล่าวสามารถคำนวณได้ง่ายเช่นการใช้ bootstrap
ยังคงแพคเกจนี้โดยเจตนาไม่ได้ให้พวกเขา เหตุผลของเรื่องนี้คือข้อผิดพลาดมาตรฐานไม่ได้มีความหมายมากสำหรับการประเมินแบบเอนเอียงอย่างรุนแรงเช่นเกิดจากวิธีการประเมินที่ถูกลงโทษ การประมาณค่าแบบลงโทษเป็นกระบวนการที่ช่วยลดความแปรปรวนของตัวประมาณค่าโดยการแนะนำอคติอย่างมีนัยสำคัญ ความเอนเอียงของตัวประมาณแต่ละตัวจึงเป็นองค์ประกอบหลักของความคลาดเคลื่อนกำลังสองเฉลี่ยในขณะที่ความแปรปรวนอาจมีส่วนเพียงเล็กน้อยเท่านั้น
แต่น่าเสียดายที่ในการใช้งานส่วนใหญ่ของการถดถอยเชิงลงโทษนั้นเป็นไปไม่ได้ที่จะได้รับการประเมินความลำเอียงที่แม่นยำเพียงพอ การคำนวณตาม bootstrap ใด ๆ สามารถให้การประเมินความแปรปรวนของการประมาณการเท่านั้น การประมาณการที่น่าเชื่อถือของอคตินั้นจะมีให้เฉพาะในกรณีที่การประมาณการที่เป็นกลางไม่น่าเชื่อถือมีอยู่ซึ่งโดยทั่วไปจะไม่เกิดขึ้นในกรณีที่มีการใช้การประมาณการที่ถูกลงโทษ
การรายงานข้อผิดพลาดมาตรฐานของการประเมินที่ถูกลงโทษจึงบอกเพียงส่วนหนึ่งของเรื่องราว มันสามารถสร้างความประทับใจที่ผิดพลาดอย่างแม่นยำโดยไม่สนใจความไม่ถูกต้องที่เกิดจากอคติอย่างสมบูรณ์ มันเป็นความผิดพลาดอย่างแน่นอนในการสร้างคำแถลงความเชื่อมั่นซึ่งตั้งอยู่บนพื้นฐานของการประเมินความแปรปรวนของการประมาณการเช่นช่วงความเชื่อมั่นที่ใช้ bootstrap