ฉันได้อ่านคำอธิบายของอัลกอริทึม EM (เช่นจากการจดจำรูปแบบของอธิการและการเรียนรู้ของเครื่องและจากหลักสูตรแรกของ Roger and Gerolami ในการเรียนรู้ของเครื่อง) การได้มาของ EM ก็โอเคฉันเข้าใจแล้ว ฉันยังเข้าใจว่าทำไมอัลกอริทึมครอบคลุมถึงบางสิ่ง: ในแต่ละขั้นตอนเราปรับปรุงผลลัพธ์และโอกาสถูกล้อมรอบด้วย 1.0 ดังนั้นโดยใช้ข้อเท็จจริงง่าย ๆ (หากฟังก์ชันเพิ่มขึ้นและถูก จำกัด ขอบเขตจากนั้นก็มาบรรจบกัน) เรารู้ว่าอัลกอริทึม ทางออกบางอย่าง
อย่างไรก็ตามเราจะรู้ได้อย่างไรว่ามันเป็นขั้นต่ำในท้องถิ่น? ในแต่ละขั้นตอนเรากำลังพิจารณาพิกัดเดียวเท่านั้น (ไม่ว่าจะเป็นตัวแปรแฝงหรือพารามิเตอร์) ดังนั้นเราอาจพลาดอะไรบางอย่างเช่นค่าต่ำสุดในท้องถิ่นต้องการการเคลื่อนย้ายโดยพิกัดทั้งสองพร้อมกัน
ฉันเชื่อว่านี่เป็นปัญหาที่คล้ายคลึงกับของขั้นตอนวิธีการปีนเขาทั่วไปซึ่ง EM เป็นตัวอย่างของ ดังนั้นสำหรับอัลกอริทึมการปีนเขาทั่วไปเรามีปัญหานี้สำหรับฟังก์ชั่น f (x, y) = x * y หากเราเริ่มต้นจากจุด (0, 0) ดังนั้นเพียงพิจารณาทั้งสองทิศทางในครั้งเดียวเราสามารถเลื่อนขึ้นจาก 0 ค่า