ฉันประเมินโมเดลเชิงเส้นที่ทนทานR
ด้วยน้ำหนัก MM โดยใช้rlm()
แพคเกจ MASS `R`` ไม่ได้ให้ค่าสำหรับแบบจำลอง แต่ฉันต้องการให้มีค่าหากเป็นปริมาณที่มีความหมาย ฉันยังสนใจที่จะทราบว่ามีความหมายใด ๆ ในการมีค่าR 2ที่ชั่งน้ำหนักความแปรปรวนทั้งหมดและส่วนที่เหลือในลักษณะเดียวกับที่การสังเกตนั้นมีน้ำหนักในการถดถอยที่แข็งแกร่งหรือไม่ ความคิดทั่วไปของฉันคือถ้าสำหรับวัตถุประสงค์ของการถดถอยเรามีน้ำหนักที่ให้อิทธิพลน้อยกว่าเพราะพวกมันมีค่าผิดปกติในทางใดทางหนึ่งบางทีอาจจะเพื่อการคำนวณr 2เราควรให้ค่าเหล่านั้นด้วย ประมาณการเดียวกันมีอิทธิพลน้อยลงหรือไม่
ฉันเขียนฟังก์ชันง่าย ๆ สองอย่างสำหรับและR 2ถ่วงน้ำหนักพวกมันอยู่ด้านล่าง ฉันยังรวมผลลัพธ์ของการเรียกใช้ฟังก์ชันเหล่านี้สำหรับแบบจำลองของฉันซึ่งเรียกว่า HI9 แก้ไข: ฉันพบหน้าเว็บของ Adelle Coster ของ UNSW ที่ให้สูตรสำหรับการรวมเวกเตอร์ตุ้มน้ำหนักในการคำนวณการคำนวณของทั้งสองและอย่างที่ฉันทำและขอให้เธออ้างอิงอย่างเป็นทางการเพิ่มเติม: http: //web.maths unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfFit.html (ยังคงต้องการความช่วยเหลือจาก Cross Validated เกี่ยวกับวิธีการตีความน้ำหนักr 2นี้)R2
SSe
SSt
#I used this function to calculate a basic r-squared from the robust linear model
r2 <- function(x){
+ SSe <- sum((x$resid)^2);
+ observed <- x$resid+x$fitted;
+ SSt <- sum((observed-mean(observed))^2);
+ value <- 1-SSe/SSt;
+ return(value);
+ }
r2(HI9)
[1] 0.2061147
#I used this function to calculate a weighted r-squared from the robust linear model
> r2ww <- function(x){
+ SSe <- sum((x$w*x$resid)^2); #the residual sum of squares is weighted
+ observed <- x$resid+x$fitted;
+ SSt <- sum((x$w*(observed-mean(observed)))^2); #the total sum of squares is weighted
+ value <- 1-SSe/SSt;
+ return(value);
+ }
> r2ww(HI9)
[1] 0.7716264
ขอบคุณทุกคนที่ใช้เวลาตอบคำถามนี้ โปรดยอมรับคำขอโทษของฉันหากมีการอ้างอิงที่ดีมากที่ฉันพลาดไปหรือถ้ารหัสของฉันยากต่อการอ่าน (ฉันไม่ใช่คนที่แต่งตัวประหลาดรหัส)