ฉันมีชุดข้อมูลขนาดเล็กมากที่มีผึ้งมากมายโดดเดี่ยวที่ฉันมีปัญหาในการวิเคราะห์ มันคือข้อมูลนับและจำนวนเกือบทั้งหมดอยู่ในการรักษาหนึ่งโดยมีศูนย์ส่วนใหญ่ในการรักษาอื่น นอกจากนี้ยังมีค่าสูงสองสามค่า (ค่าละหนึ่งในสองแห่งในหกแห่ง) ดังนั้นการแจกแจงค่าจะมีหางที่ยาวมาก ฉันทำงานในอาร์ฉันใช้แพ็คเกจที่แตกต่างกันสองแบบ: lme4 และ glmmADMB
รูปแบบผสมปัวซองไม่เหมาะสม: แบบจำลองมีการกระจายตัวมากเกินไปเมื่อเอฟเฟกต์แบบสุ่มไม่เหมาะสม (แบบจำลอง GLM) และแบบจำลองที่น้อยเกินไปเมื่อติดตั้งเอฟเฟกต์แบบสุ่ม (รุ่น glmer) ฉันไม่เข้าใจว่าทำไมถึงเป็นเช่นนี้ การออกแบบการทดลองเรียกร้องให้มีเอฟเฟกต์แบบซ้อนกันดังนั้นฉันจึงจำเป็นต้องรวมไว้ด้วย การกระจายข้อผิดพลาดของปัวซอง lognormal ไม่ได้ปรับปรุงให้พอดี ฉันลองใช้การแจกแจงข้อผิดพลาดแบบทวินามลบโดยใช้ glmer.nb และไม่สามารถทำให้พอดี - ถึงขีด จำกัด การวนซ้ำแม้ว่าจะเปลี่ยนความอดทนโดยใช้ glmerControl (tolPwrss = 1e-3)
เนื่องจากเลขศูนย์จำนวนมากจะเกิดจากความจริงที่ว่าฉันไม่เห็นผึ้ง (พวกมันมักจะเป็นสิ่งดำเล็ก ๆ ) ฉันจึงลองแบบจำลองที่ไม่มีการพอง ZIP ไม่พอดี ZINB เป็นแบบจำลองที่ดีที่สุดจนถึงตอนนี้ แต่ฉันก็ยังไม่ค่อยมีความสุขกับแบบจำลอง ฉันตกอยู่ในความสูญเสียว่าจะลองทำอะไรต่อไป ฉันลองใช้แบบจำลองอุปสรรค์ แต่ไม่สามารถกระจายการตัดทอนไปยังผลลัพธ์ที่ไม่เป็นศูนย์ได้ - ฉันคิดว่าเนื่องจากศูนย์จำนวนมากอยู่ในการควบคุมการรักษา (ข้อความแสดงข้อผิดพลาดคือ“ ข้อผิดพลาดใน model.frame.default” (สูตร = s.bee ~ tmt + lu +: ความยาวผันแปรต่างกัน (พบสำหรับ 'การรักษา')”)
นอกจากนี้ฉันคิดว่าการโต้ตอบที่ฉันได้รวมทำสิ่งที่แปลกกับข้อมูลของฉันเนื่องจากค่าสัมประสิทธิ์มีขนาดเล็กเกินจริง - แม้ว่าโมเดลที่มีการโต้ตอบนั้นดีที่สุดเมื่อฉันเปรียบเทียบรุ่นที่ใช้ AICctab ในแพ็คเกจ bbmle
ฉันกำลังรวมสคริปต์ R ที่จะทำซ้ำชุดข้อมูลของฉัน ตัวแปรมีดังนี้:
d = วันที่จูเลียน, df = วันที่จูเลียน (เป็นปัจจัย), d.sq = df กำลังสอง (จำนวนผึ้งเพิ่มขึ้นจากนั้นก็ตกลงไปตลอดฤดูร้อน), st = ไซต์, s.bee = จำนวนผึ้ง, tmt = การรักษา, l = ชนิดของการใช้ที่ดิน, hab = ร้อยละของที่อยู่อาศัยกึ่งธรรมชาติในภูมิทัศน์โดยรอบ, ba = พื้นที่เขตรอบเขตข้อมูล
ข้อเสนอแนะใด ๆ เกี่ยวกับวิธีที่ฉันจะได้รับแบบจำลองที่ดี (การกระจายข้อผิดพลาดทางเลือกชนิดอื่น ๆ ของแบบจำลอง) จะได้รับสุดซึ้งมาก!
ขอบคุณ.
d <- c(80, 80, 121, 121, 180, 180, 86, 86, 116, 116, 144, 144, 74, 74, 143, 143, 163, 163, 71, 71,106, 106, 135, 135, 162, 162, 185, 185, 83, 83, 111, 111, 133, 133, 175, 175, 85, 85, 112, 112,137, 137, 168, 168, 186, 186, 64, 64, 95, 95, 127, 127, 156, 156, 175, 175, 91, 91, 119, 119,120, 120, 148, 148, 56, 56)
df <- as.factor(d)
d.sq <- d^2
st <- factor(rep(c("A", "B", "C", "D", "E", "F"), c(6,12,18,10,14,6)))
s.bee <- c(1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,4,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,5,0,0,2,0,50,0,10,0,4,0,47,3)
tmt <- factor(c("AF","C","C","AF","AF","C","AF","C","AF","C","C","AF","AF","C","AF","C","AF","C","AF","C",
"C","AF","AF","C","AF","C","C","AF","AF","C","AF","C","AF","C","AF","C","AF","C","AF","C",
"C","AF","AF","C","AF","C","AF","C","AF","C","C","AF","C","AF","C","AF","AF","C","AF","C",
"AF","C","AF","C","AF","C"))
lu <- factor(rep(c("p","a","p","a","p"), c(6,12,28,14,6)))
hab <- rep(c(13,14,13,14,3,4,3,4,3,4,3,4,3,4,15,35,37,35,37,35,37,35,37,0,2,1,2,1,2,1),
c(1,2,2,1,1,1,1,2,2,1,1,1,1,1,18,1,1,1,2,2,1,1,1,14,1,1,1,1,1,1))
ba <- c(480,6520,6520,480,480,6520,855,1603,855,1603,1603,855,855,12526,855,5100,855,5100,2670,7679,7679,2670,
2670,7679,2670,7679,7679,2670,2670,7679,2670,7679,2670,7679,2670,7679,1595,3000,1595,3000,3000,1595,1595,3000,1595
,3000,4860,5460,4860,5460,5460,4860,5460,4860,5460,4860,4840,5460,4840,5460,3000,1410,3000,1410,3000,1410)
data <- data.frame(st,df,d.sq,tmt,lu,hab,ba,s.bee)
with(data, table(s.bee, tmt) )
# below is a much abbreviated summary of attempted models:
library(MASS)
library(lme4)
library(glmmADMB)
library(coefplot2)
###
### POISSON MIXED MODEL
m1 <- glmer(s.bee ~ tmt + lu + hab + (1|st/df), family=poisson)
summary(m1)
resdev<-sum(resid(m1)^2)
mdf<-length(fixef(m1))
rdf<-nrow(data)-mdf
resdev/rdf
# 0.2439303
# underdispersed. ???
###
### NEGATIVE BINOMIAL MIXED MODEL
m2 <- glmer.nb(s.bee ~ tmt + lu + hab + d.sq + (1|st/df))
# iteration limit reached. Can't make a model work.
###
### ZERO-INFLATED POISSON MIXED MODEL
fit_zipoiss <- glmmadmb(s.bee~tmt + lu + hab + ba + d.sq +
tmt:lu +
(1|st/df), data=data,
zeroInflation=TRUE,
family="poisson")
# has to have lots of variables to fit
# anyway Poisson is not a good fit
###
### ZERO-INFLATED NEGATIVE BINOMIAL MIXED MODELS
## BEST FITTING MODEL SO FAR:
fit_zinb <- glmmadmb(s.bee~tmt + lu + hab +
tmt:lu +
(1|st/df),data=data,
zeroInflation=TRUE,
family="nbinom")
summary(fit_zinb)
# coefficients are tiny, something odd going on with the interaction term
# but this was best model in AICctab comparison
# model check plots
qqnorm(resid(fit_zinb))
qqline(resid(fit_zinb))
coefplot2(fit_zinb)
resid_zinb <- resid(fit_zinb , type = "pearson")
hist(resid_zinb)
fitted_zinb <- fitted (fit_zinb)
plot(resid_zinb ~ fitted_zinb)
## MODEL WITHOUT INTERACTION TERM - the coefficients are more realistic:
fit_zinb2 <- glmmadmb(s.bee~tmt + lu + hab +
(1|st/df),data=data,
zeroInflation=TRUE,
family="nbinom")
# model check plots
qqnorm(resid(fit_zinb2))
qqline(resid(fit_zinb2))
coefplot2(fit_zinb2)
resid_zinb2 <- resid(fit_zinb2 , type = "pearson")
hist(resid_zinb2)
fitted_zinb2 <- fitted (fit_zinb2)
plot(resid_zinb2 ~ fitted_zinb2)
# ZINB models are best so far
# but I'm not happy with the model check plots