จากมุมมองความน่าจะเป็นแบบเบย์ทำไมช่วงเวลาความมั่นใจ 95% จึงไม่มีพารามิเตอร์จริงที่มีความน่าจะเป็น 95%


14

จากหน้า Wikipedia เกี่ยวกับช่วงความมั่นใจ :

... หากช่วงความมั่นใจถูกสร้างขึ้นในการวิเคราะห์ข้อมูลที่แยกกันหลายครั้งของการทดลองซ้ำ (และอาจแตกต่างกัน) การทดลองสัดส่วนของช่วงเวลาดังกล่าวที่มีค่าจริงของพารามิเตอร์จะตรงกับระดับความเชื่อมั่น ...

และจากหน้าเดียวกัน:

ช่วงความเชื่อมั่นไม่ได้คาดการณ์ว่ามูลค่าที่แท้จริงของพารามิเตอร์มีความน่าจะเป็นโดยเฉพาะอย่างยิ่งที่จะอยู่ในช่วงความเชื่อมั่นที่ได้รับข้อมูลจริง

ถ้าฉันเข้าใจถูกต้องประโยคสุดท้ายนี้ทำขึ้นโดยการตีความความน่าจะเป็นบ่อยๆในใจ อย่างไรก็ตามจากมุมมองความน่าจะเป็นแบบเบย์ทำไมช่วงเวลาความมั่นใจ 95% จึงไม่มีพารามิเตอร์จริงที่มีความน่าจะเป็น 95% และถ้าไม่เช่นนั้นจะเกิดอะไรขึ้นกับการให้เหตุผลต่อไปนี้?

หากฉันมีกระบวนการที่ฉันรู้ว่าสร้างคำตอบที่ถูกต้อง 95% ของเวลาความน่าจะเป็นของคำตอบถัดไปที่ถูกต้องคือ 0.95 (เนื่องจากฉันไม่มีข้อมูลเพิ่มเติมเกี่ยวกับกระบวนการ) ในทำนองเดียวกันถ้ามีคนแสดงช่วงความมั่นใจที่สร้างขึ้นโดยกระบวนการที่จะมีพารามิเตอร์จริง 95% ของเวลาฉันไม่ควรพูดว่ามันมีพารามิเตอร์จริงที่มีความน่าจะเป็น 0.95 ตามที่ฉันรู้

คำถามนี้คล้ายกับ แต่ไม่เหมือนกับทำไม 95% CI จึงไม่ได้หมายความถึงโอกาส 95% ที่มีค่าเฉลี่ย คำตอบสำหรับคำถามนั้นมุ่งเน้นไปที่สาเหตุที่ 95% CI ไม่ได้บอกถึงโอกาส 95% ในการเก็บค่าเฉลี่ยจากมุมมองของผู้ใช้บ่อย คำถามของฉันเหมือนกัน แต่จากมุมมองความน่าจะเป็นแบบเบย์


วิธีคิดอย่างหนึ่งคือ 95% CI คือ "ค่าเฉลี่ยระยะยาว" ขณะนี้มีหลายวิธีในการแบ่งคดี "ระยะสั้น" ของคุณเพื่อให้ได้รับความคุ้มครองตามอำเภอใจอย่างเป็นธรรม - แต่เมื่อเฉลี่ยโดยรวมให้ 95% อีกวิธีที่เป็นนามธรรมมากขึ้นจะสร้างxiBernoulli(pi)สำหรับi=1,2,เช่นว่าi=1pi=0.95 0.95 มีวิธีมากมายที่คุณสามารถทำได้ ที่นี่xiบ่งชี้ว่า CI ที่สร้างขึ้นด้วยชุดข้อมูล ith มีพารามิเตอร์หรือไม่และpiคือความน่าจะเป็นที่ครอบคลุมสำหรับกรณีนี้
ความน่าจะเป็นทาง

คำตอบ:


11

อัปเดต : ด้วยข้อดีของการเข้าใจถึงปัญหาย้อนหลังไม่กี่ปีที่ผ่านมาฉันได้เขียนบทสรุปที่กระชับกว่าเดิมเกี่ยวกับเนื้อหาเดียวกันเพื่อตอบคำถามที่คล้ายกัน


วิธีการสร้างเขตความเชื่อมั่น

ให้เราเริ่มต้นด้วยวิธีทั่วไปสำหรับการสร้างพื้นที่ความมั่นใจ สามารถใช้กับพารามิเตอร์เดียวเพื่อสร้างช่วงความเชื่อมั่นหรือช่วงเวลา และสามารถใช้กับพารามิเตอร์สองตัวหรือมากกว่านั้นเพื่อให้ได้พื้นที่ความเชื่อมั่นในมิติที่สูงขึ้น

เรายืนยันว่าสถิติสังเกตDมาจากการจัดจำหน่ายที่มีพารามิเตอร์θคือการกระจายการสุ่มตัวอย่างs(d|θ)กว่าสถิติที่เป็นไปได้dและแสวงหาภูมิภาคเชื่อมั่นให้θในชุดของค่าที่เป็นไปได้ΘΘกำหนดความหนาแน่นสูงสุดภาค (HDR) คือh -HDR ของไฟล์ PDF เป็นชุดย่อยที่เล็กที่สุดของประสิทธิภาพสูงที่รองรับความน่าจะเป็นชั่วโมงhแสดงว่าh -HDR ของs(d|ψ)เป็นHψสำหรับψใด ๆψΘ Θ จากนั้นhภูมิภาคเชื่อมั่นให้θให้ข้อมูลDเป็นชุดCD={ϕ:DHϕ} } ค่าทั่วไปของhจะเท่ากับ 0.95

การตีความบ่อย

จากคำนิยามก่อน ๆ ของภูมิภาคเชื่อมั่นดังนี้

dHψψCd
กับCd={ϕ:dHϕ} } ตอนนี้คิดว่าเป็นชุดใหญ่ของ ( สมมุติ ) สังเกต{Di}นำภายใต้สถานการณ์ที่คล้ายกับDDคือพวกเขาเป็นตัวอย่างจากs(d|θ) ) เนื่องจากHθรองรับมวลความน่าจะเป็นhของ PDF s(d|θ) ,P(DiHθ)=hสำหรับฉันiดังนั้นส่วนของการ{Di}ซึ่งDiHθเป็นชั่วโมงhและเพื่อให้ใช้ความเท่าเทียมข้างต้นส่วนของการ{Di}ซึ่งθCDiยังเป็นชั่วโมงh

นี่คือสิ่งที่ผู้เรียกร้องสิทธิประจำสำหรับเขตความเชื่อมั่นhสำหรับθจำนวน:

ใช้เป็นจำนวนมากของการสังเกตจินตนาการ{Di}จากการกระจายการสุ่มตัวอย่างs(d|θ)ที่ก่อให้เกิดการสังเกตสถิติDDจากนั้นθโกหกภายในส่วนhของคล้ายคลึง แต่จินตนาการภูมิภาคเชื่อมั่น{CDi} }

เขตความเชื่อมั่นCDไม่ได้อ้างสิทธิ์ใด ๆ เกี่ยวกับความน่าจะเป็นที่θอยู่ที่ไหนสักแห่ง! เหตุผลก็คือว่าไม่มีอะไรใน fomulation ที่ช่วยให้เราสามารถที่จะพูดถึงการกระจายความน่าจะเป็นมากกว่าθθการตีความเป็นเพียงโครงสร้างที่ซับซ้อนซึ่งไม่ได้ปรับปรุงฐาน ฐานเป็นs(d|θ)และDเท่านั้นโดยที่θไม่ปรากฏเป็นปริมาณการกระจายและไม่มีข้อมูลที่เราสามารถใช้เพื่อแก้ไขปัญหานั้น โดยทั่วไปมีสองวิธีในการรับการแจกแจงผ่านθ :

  1. กำหนดจัดจำหน่ายโดยตรงจากข้อมูลที่อยู่ในมือ: p(θ|I) )
  2. ที่เกี่ยวข้องθกับปริมาณการกระจายอื่น: p(θ|I)=p(θx|I)dx=p(θ|xI)p(x|I)dx x

ในทั้งสองกรณีθจะต้องปรากฏที่ด้านซ้ายที่ใดที่หนึ่ง ผู้ใช้บ่อย ๆ ไม่สามารถใช้วิธีการใดวิธีหนึ่งได้เนื่องจากทั้งคู่ต้องการวิธีนอกรีตมาก่อน

มุมมองแบบเบย์

มากที่สุดคชกรรมสามารถทำให้ของhภูมิภาคเชื่อมั่นCDได้รับโดยไม่ต้องมีคุณสมบัติเป็นเพียงการตีความโดยตรงว่ามันเป็นชุดของϕที่Dตกอยู่ในh -HDR Hϕของการกระจายการสุ่มตัวอย่างs(d|ϕ) ) มันไม่จำเป็นต้องบอกเรามากเกี่ยวกับθและนี่คือเหตุผล

น่าจะเป็นที่θCDได้รับการDและข้อมูลพื้นหลังIเป็น:

P(θCD|DI)=CDp(θ|DI)dθ=CDp(D|θI)p(θ|I)p(D|I)dθ
สังเกตว่าแตกต่างจากการตีความ frequentist เราได้เรียกร้องการกระจายมากกว่าทันทีθθข้อมูลพื้นหลังIบอกเราเป็นมาก่อนว่าการกระจายการสุ่มตัวอย่างอยู่ที่s(d|θ):
P(θCD|DI)=CDs(D|θ)p(θ|I)p(D|I)dθ=CDs(D|θ)p(θ|I)dθp(D|I)i.e.P(θCD|DI)=CDs(D|θ)p(θ|I)dθs(D|θ)p(θ|I)dθ
Now this expression does not in general evaluate to h, which is to say, the h confidence region CD does not always contain θ with probability h. In fact it can be starkly different from h. There are, however, many common situations in which it does evaluate to h, which is why confidence regions are often consistent with our probabilistic intuitions.

For example, suppose that the prior joint PDF of d and θ is symmetric in that pd,θ(d,θ|I)=pd,θ(θ,d|I). (Clearly this involves an assumption that the PDF ranges over the same domain in d and θ.) Then, if the prior is p(θ|I)=f(θ), we have s(D|θ)p(θ|I)=s(D|θ)f(θ)=s(θ|D)f(D). Hence

P(θCD|DI)=CDs(θ|D)dθs(θ|D)dθi.e.P(θCD|DI)=CDs(θ|D)dθ
From the definition of an HDR we know that for any ψΘ
Hψs(d|ψ)dd=hand therefore thatHDs(d|D)dd=hor equivalentlyHDs(θ|D)dθ=h
s(d|θ)f(θ)=s(θ|d)f(d)CD=HDP(θCD|DI)=h
CD=HDψ[ψCDψHD]
Applying the equivalence near the top:
CD=HDψ[DHψψHD]
Thus, the confidence region CD contains θ with probability h if for all possible values ψ of θ, the h-HDR of s(d|ψ) contains D if and only if the h-HDR of s(d|D) contains ψ.

Now the symmetric relation DHψψHD is satisfied for all ψ when s(ψ+δ|ψ)=s(Dδ|D) for all δ that span the support of s(d|D) and s(d|ψ). We can therefore form the following argument:

  1. s(d|θ)f(θ)=s(θ|d)f(d) (premise)
  2. ψδ[s(ψ+δ|ψ)=s(Dδ|D)] (premise)
  3. ψδ[s(ψ+δ|ψ)=s(Dδ|D)]ψ[DHψψHD]
  4. ψ[DHψψHD]
  5. ψ[DHψψHD]CD=HD
  6. CD=HD
  7. [s(d|θ)f(θ)=s(θ|d)f(d)CD=HD]P(θCD|DI)=h
  8. P(θCD|DI)=h

Let's apply the argument to a confidence interval on the mean of a 1-D normal distribution (μ,σ), given a sample mean x¯ from n measurements. We have θ=μ and d=x¯, so that the sampling distribution is

s(d|θ)=nσ2πen2σ2(dθ)2
Suppose also that we know nothing about θ before taking the data (except that it's a location parameter) and therefore assign a uniform prior: f(θ)=k. Clearly we now have s(d|θ)f(θ)=s(θ|d)f(d), so the first premise is satisfied. Let s(d|θ)=g((dθ)2). (i.e. It can be written in that form.) Then
s(ψ+δ|ψ)=g((ψ+δψ)2)=g(δ2)ands(Dδ|D)=g((DδD)2)=g(δ2)so thatψδ[s(ψ+δ|ψ)=s(Dδ|D)]
whereupon the second premise is satisfied. Both premises being true, the eight-point argument leads us to conclude that the probability that θ lies in the confidence interval CD is h!

We therefore have an amusing irony:

  1. The frequentist who assigns the h confidence interval cannot say that P(θCD)=h, no matter how innocently uniform θ looks before incorporating the data.
  2. The Bayesian who would not assign an h confidence interval in that way knows anyhow that P(θCD|DI)=h.

Final Remarks

We have identified conditions (i.e. the two premises) under which the h confidence region does indeed yield probability h that θCD. A frequentist will baulk at the first premise, because it involves a prior on θ, and this sort of deal-breaker is inescapable on the route to a probability. But for a Bayesian, it is acceptable---nay, essential. These conditions are sufficient but not necessary, so there are many other circumstances under which the Bayesian P(θCD|DI) equals h. Equally though, there are many circumstances in which P(θCD|DI)h, especially when the prior information is significant.

We have applied a Bayesian analysis just as a consistent Bayesian would, given the information at hand, including statistics D. But a Bayesian, if he possibly can, will apply his methods to the raw measurements instead---to the {xi}, rather than x¯. Oftentimes, collapsing the raw data into summary statistics D destroys information in the data; and then the summary statistics are incapable of speaking as eloquently as the original data about the parameters θ.


Would it be correct to say that a Bayesian is committed to take all the available information into account, while interpretation given in the question ignored D in some sense?
qbolec

Is it a good mental picture to illustrate the situation: imagine a grayscale image, where intensity of pixel x,y is the joint ppb of real param being y and observed stat being x. In each row y, we mark pixels which have 95% mass of the row. For each observed stat x, we define CI(x) to be the set of rows which have marked pixels in column x. Now, if we choose x,y randomly then CI(x) will contain y iff x,y was marked, and mass of marked pixels is 95% for each y. So, frequentists say that keeping y fixed, chance is 95%, OP says, that not fixing y also gives 95%, and bayesians fix y and don't know
qbolec

@qbolec It is correct to say that in the Bayesian method one cannot arbitrarily ignore some information while taking account of the rest. Frequentists say that for all y the expectation of yCI(x) (as a Boolean integer) under the sampling distribution prob(x|y,I) is 0.95. The frequentist 0.95 is not a probability but an expectation.
CarbonFlambe--Reinstate Monica

6

from a Bayesian probability perspective, why doesn't a 95% confidence interval contain the true parameter with 95% probability?

Two answers to this, the first being less helpful than the second

  1. There are no confidence intervals in Bayesian statistics, so the question doesn't pertain.

  2. In Bayesian statistics, there are however credible intervals, which play a similar role to confidence intervals. If you view priors and posteriors in Bayesian statistics as quantifying the reasonable belief that a parameter takes on certain values, then the answer to your question is yes, a 95% credible interval represents an interval within which a parameter is believed to lie with 95% probability.

If I have a process that I know produces a correct answer 95% of the time then the probability of the next answer being correct is 0.95 (given that I don't have any extra information regarding the process).

yes, the process guesses a right answer with 95% probability

Similarly if someone shows me a confidence interval that is created by a process that will contain the true parameter 95% of the time, should I not be right in saying that it contains the true parameter with 0.95 probability, given what I know?

Just the same as your process, the confidence interval guesses the correct answer with 95% probability. We're back in the world of classical statistics here: before you gather the data you can say there's a 95% probability of randomly gathered data determining the bounds of the confidence interval such that the mean is within the bounds.

With your process, after you've gotten your answer, you can't say based on whatever your guess was, that the true answer is the same as your guess with 95% probability. The guess is either right or wrong.

And just the same as your process, in the confidence interval case, after you've gotten the data and have an actual lower and upper bound, the mean is either within those bounds or it isn't, i.e. the chance of the mean being within those particular bounds is either 1 or 0. (Having skimmed the question you refer to it seems this is covered in much more detail there.)

How to interpret a confidence interval given to you if you subscribe to a Bayesian view of probability.

There are a couple of ways of looking at this

  1. Technically, the confidence interval hasn't been produced using a prior and Bayes theorem, so if you had a prior belief about the parameter concerned, there would be no way you could interpret the confidence interval in the Bayesian framework.

  2. Another widely used and respected interpretation of confidence intervals is that they provide a "plausible range" of values for the parameter (see, e.g., here). This de-emphasises the "repeated experiments" interpretation.

Moreover, under certain circumstances, notably when the prior is uninformative (doesn't tell you anything, e.g. flat), confidence intervals can produce exactly the same interval as a credible interval. In these circumstances, as a Bayesianist you could argue that had you taken the Bayesian route you would have gotten exactly the same results and you could interpret the confidence interval in the same way as a credible interval.


but for sure confidence intervals exist even if I subscribe to a bayesian view of probability, they just wont dissapear, right? :)The situation I was asking about was how to interpret a confidence interval given to you if you subscribe to a Bayesian view of probability.
Rasmus Bååth

The problem is that confidence intervals aren't produced using a Bayesian methodology. You don't start with a prior. I'll edit the post to add something which might help.
TooTone

2

I'll give you an extreme example where they are different.

Suppose I create my 95% confidence interval for a parameter θ as follows. Start by sampling the data. Then generate a random number between 0 and 1. Call this number u. If u is less than 0.95 then return the interval (,). Otherwise return the "null" interval.

Now over continued repititions, 95% of the CIs will be "all numbers" and hence contain the true value. The other 5% contain no values, hence have zero coverage. Overall, this is a useless, but technically correct 95% CI.

The Bayesian credible interval will be either 100% or 0%. Not 95%.


So is it correct to say that before seeing a confidence interval there is a 95% probability that it will contain the true parameter, but for any given confidence interval the probability that it covers the true parameter depends on the data (and our prior)? To be honest, what I'm really struggling with is how useless confidence intervals sounds (credible intervals I like on the other hand) and the fact that I never the less will have to teach them to our students next week... :/
Rasmus Bååth

This question has some more examples, plus a very good paper comparing the two approaches
probabilityislogic

1

"from a Bayesian probability perspective, why doesn't a 95% confidence interval contain the true parameter with 95% probability? "

In Bayesian Statistics the parameter is not a unknown value, it is a Distribution. There is no interval containing the "true value", for a Bayesian point of view it does not even make sense. The parameter it's a random variable, you can perfectly know the probability of that value to be between x_inf an x_max if you know the distribuition. It's just a diferent mindset about the parameters, usually Bayesians used the median or average value of the distribuition of the parameter as a "estimate". There is not a confidence interval in Bayesian Statistics, something similar is called credibility interval.

Now from a frequencist point of view, the parameter is a "Fixed Value", not a random variable, can you really obtain probability interval (a 95% one) ? Remember that it's a fixed value not a random variable with a known distribution. Thats why you past the text :"A confidence interval does not predict that the true value of the parameter has a particular probability of being in the confidence interval given the data actually obtained."

The idea of repeating the experience over and over... is not Bayesian reasoning it's a Frequencist one. Imagine a real live experiment that you can only do once in your life time, can you/should you built that confidence interval (from the classical point of view )?.

But... in real life the results could get pretty close ( Bayesian vs Frequencist), maybe thats why It could be confusing.

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.